

Potenzialstudie für die Deponie Venneberg im Landkreis Emsland

(Kurztitel: Potentialstudie Venneberg)

Förderkennzeichen: 03K13947

Auftraggeber: Landkreis Emsland

Dezernat III - Bauen und Umwelt

Abfallwirtschaftsbetrieb Landkreis Emsland

Ordeniederung 1 49716 Meppen

Bearbeitet von: Eisenlohr Energie- & Umwelttechnik GmbH

Untere Beutau 25 73728 Esslingen

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

ZUSAMMENFASSUNG

Der Landkreis Emsland ist Genehmigungsinhaber und Betreiber der Deponie Venneberg. Sämtliche technische Einrichtungen befinden sich im Eigentum des Landkreises.

Der Landkreis Emsland betreibt seit 1976 die Deponie Venneberg in 49811 Lingen.

Die Deponie wurde mit Planfeststellungsbeschluss vom 29.05.1975 genehmigt.

Auf einer Grundfläche von ca. 11,55 ha wurde in den Jahren ab 1976 bis 2005 ein Abfallvolumen von insgesamt ca. 1.7 Mio. m³ verbaut.

Die Deponie Venneberg befindet sich bereits seit 2009 in der Stilllegungsphase und seit Mai 2019 in der Nachsorgephase. 30 Gasbrunnen sind im Einzelanschluss über vier Gassammelstationen mit der Verdichteranlage verbunden.

Das Gasaufkommen ist seit Ende der Verfüllung mit einer Halbwertszeit von 8 – 10 Jahren rückläufig.

Auf der Deponie betreibt der Landkreis Emsland eine Deponieentgasungsanlage, bestehend aus einer Verdichterstation mit zwei Drehkolbengebläsen mit nachgeschalteter motorischer Nutzung (Gasmotor/BHKW) sowie für Ausfallzeiten der Nutzung eine Hochtemperaturverbrennung (Fackelanlage).

Die Entgasungsanlage wurde im Jahr 1999 mit vier Gassammelstellen errichtet. Die derzeitige Verdichter- und Fackelanlage wurde auf eine Kapazität von min. 200 – 1.000 m^3/h (5 MW_{th}) ausgelegt.

Das BHKW ist im Besitz des Landkreises Emsland und hat eine maximale Leistung von 311 kWal.

Nach den Ergebnissen der letzten Wirkungskontrolle der Eisenlohr Energie & Umwelttechnik GmbH (EEUT) vom Feb. 2021 zeigt die Deponie Venneberg mit der aktuellen Gasmenge von ca. 58 Nm³/h während des Regelbetriebs absinkende Gasqualitäten. Die Entgasungsanlage arbeitet insgesamt intermittierend am unteren Betriebspunkt.

Vor diesem Hintergrund hat der Landkreis Emsland die EEUT mit der Erarbeitung von Klimaschutzteilkonzepten zur Reduzierung von Treibhausgasemissionen aus Siedlungsabfalldeponien beauftragt. Der Umfang der Analyse wurde wie folgt festgelegt:

Bestandsaufnahme, Auswertung des Datenbestands, ergänzende Untersuchungen am Deponiekörper, Potentialanalyse, Maßnahmenkatalog und Controlling-Konzept.

Seite 2

Die Deponiegassituation

Die Deponie Venneberg befindet sich bereits in der sogenannten Lufteindringphase, d.h. die Halbwertszeiten der Gasentstehung nehmen immer weiter zu, die Gaserfassung zeigt bei geringem Unterdruck bereits einen geringen CH₄-Anteil, die Gasbildung erfolgt mit abnehmendem CO₂- Gehalt.

Insgesamt befinden sich 30 Gasfassungselemente im Einzelanschluss auf der Deponie im Betrieb. Über 4 Gassammelstellen sind die Gasleitungen mit der Verdichteranlage verbunden.

Die Untersuchungen am Deponiekörper haben folgende Ergebnisse erbracht:

- Im Mittel wurden 58 m³/h Deponiegas mit ca. 42,0 Vol.-% CH₄-Anteil erfasst und entsorgt.
- Die aktuelle Entwicklung bei der Gasentstehung zeigte, dass eine zunehmende Anzahl von Gasbrunnen einen geringeren CH₄-Gehalt aufweisen.
- Nach den Ergebnissen der letzten FID-Messung vom April 2020 (Abbildung 2) zeigte die Deponie Venneberg keine Gasemissionen an mit Endabdichtung abgedeckten Flächen.
- Die Gasbehandlungsanlage ist veraltet und entspricht nicht mehr den Anforderungen der zunehmenden Schwachgasbildung aufgrund des Alters der Deponie.

Das Entgasungssystem ist funktionsfähig, sollte jedoch an die aktuelle Situation angepasst werden. Folgende Verbesserungen sollten vorgenommen werden:

- Errichtung einer neuen Schwachgasbehandlungsanlage mit Wärmeauskopplung.
- Neue Gasregelstrecken zur Einstellung der geringeren Gasmengen.

Die Potentialanalyse zeigt folgende Ergebnisse:

Die Berechnung des oTS Gehalts je Mg hat für das Jahr 2020 3,95 kg oTS/Mg Ablagerungsmenge ergeben.

Für das Jahr 2020 ergibt sich daraus eine Gasproduktion von minimal ca. 88 m 3 /h, im Mittel ca. 101 m 3 /h sowie maximal 114 m 3 /h (CH $_4$ = 40 Vol.-%).

Im Jahr 2020 wurde die Entgasungsanlage im Mittel mit ca. 58 m 3 /h Deponiegas und einem CH $_4$ - Gehalt von ca. 42 Vol.-% betrieben. Dies entspricht einem Erfassungsgrad von nur ca. 51 %.

Aus dem Vergleich der bisherigen Gaserfassung zur Gasprognose wurden Emissionen von ca. 2.361.873 m³ berechnet.

Nach dem Umbau zur Schwachgasbehandlung der Entgasung ergibt sich gegenüber der Bestandsanlage eine Emissionsminderung im Zeitraum 2021 bis 2042 um 2.089.189 m³ Methan, entsprechend 1.916 Mg bzw. 53.642 Mg CO₂ Äquivalenz.

Die Methanerfassung kann somit um 88 % gesteigert werden.

Vorhabenbeschreibung

Für die Deponie Venneberg wurde folgender Ausbau des Entgasungssystems aufgezeigt:

- 1.) Neubau einer Schwachgasbehandlungsanlage mit Wärmeauskopplung mit einer Behandlungskapazität von 40 bis 90 m³/h, einer Feuerungsleistung von 40 bis 400 kW und einem unteren Arbeitsbereich von 3,0 Vol.-% CH₄.
- 2.) Verkleinerung der bestehenden Gasregelstrecken
- 3.) Umrüstung von 2 Gassammelstationen in PE-EL

Hierdurch kann eine Erhöhung der Gasfassung um ca. 88 % erreicht werden. Die Emissionen werden entsprechend vermindert.

Die Förderrichtlinien der NKI sehen vor eine In Situ Stabilisierung der Deponie vorzunehmen.

Hierzu eignet sich das von der EEUT entwickelte DepoFit® Verfahren. Das Verfahren erlaubt mit einer ausgewählten Anlagengröße und Leistung die Behandlung des Deponiegases bis zum Abklingen der Gasbildung im Jahre 2042 vorzunehmen.

Die gesamten Investkosten wurden mit ca. 404.210_€ ermittelt, hinzu kommen anteilige Planungskosten in Höhe von 20.211 € sowie die Umstellung auf In Situ Stabilisierung und Monitoring in Höhe von 20.000 €. In der Summe 444.421 €. Diese sind mit 60 % förderfähig (266.653 €).

Der Landkreis Emsland ist nicht Mehrwertsteuer abzugsberechtigt. Die Beträge erhöhen sich daher jeweils um 19 % MwSt. auf insgesamt 528.861 Euro

INHALTSVERZEICHNIS

Zusammenfassung	
1. Titel des Vorhabens	6
2. Angaben zum Projekt	6
2.1 Auftraggeber	6
2.2 Standort des Vorhabens	6
2.3 Stammdaten der Deponie Venneberg	7
2.4 Zulassungen – Genehmigungen	7
3. Bestandsaufnahme	8
3.1 Standortgegebenheiten	8
3.2 Kurzbeschreibung der Deponieentgasungseinrichtungen	10
3.3 Optimierung der bestehenden technischen Einrichtungen	11
3.4 Monitoring der Deponie Venneberg	15
3.5 Bisherige Maßnahmen	15
3.6 Tiefengestaffelte Untersuchung	15
3.7 Absaugversuch	16
3.8 Aufgabenstellung	18
4. Potentialanalyse	19
4.1 Zustandserfassung Deponiegaserfassungssystem	19
4.2 Beurteilung der Gesamtsituation	24
4.3 Gasprognose - theoretisches Emissionspotenzial	28
4.4 Erfasste Deponiegasmengen – 2004 - 2020	30
4.5 Berechnung des oTS Gehalts	31
4.6 Weitere Entwicklung der Gaserfassung	32
5 Maßnahmenkatalog für Technische Umsetzung	34
5.1 Gasverdichteranlage und Gasbehandlungsanlage	34
5.2 Gasbrunnen und Gasregelstation	34
5.3 In situ Stabilisierung	35
6 Kostenschätzung	39
7. Mögliche Emissionsminderung	40
7.1 Methanbildung	40
7.2 Vergleich mit Bestandsanlage	41
7.3 Vergleich mit neuer Schwachgasbehandlungsanlage	42
8. Controlling-Konzept zur in situ Stabilisierung	43
8.1 Gasförderstation und Schwachgasbehandlungsanlage	
8.2 Wirkungskontrollen und Funktionsprüfungen	43
8.3 Berichte zum Anlagenbetrieb	43
9 Zeitolan	44

ABBILDUNGSVERZEICHNIS

Abbildung 1: Luftbild Deponie Venneberg [Google Maps]	8
Abbildung 2: Ergebnisse der FID-Messung April 2020	14
Abbildung 3: Absauversuch mit Fackelanlage	16
Abbildung 4: Wirkungskontrolle der Entgasung Oktober 2020	25
Abbildung 5: Wirkungskontrolle der Entgasung Februar 2021	26
Abbildung 6 Wirkungskontrolle der Entgasung Mai 2021	27
Abbildung 7: Gasprognose 1976 bis 2026:	29
Abbildung 8: Erfasste Gasmengen im Vergleich zur Gasprognose (CH4 = 40 Vol%)	30
Abbildung 9: Gasprognose und Behandlung bis 2042	33
Abbildung 10: DepoFit® Verfahren	37

ANLAGENVERZEICHNIS

Anlage 1 Referenzliste der Eisenlohr Energie und Umwelttechnik

Anlage 2 Stellungnahme der Genehmigungsbehörde zum geplanten Vorhaben

Anlage 3 Lageplan neue Gasbehandlungsanlage

Anlage 4 Tabelle der abgelagerten Abfälle

Anlage 5 R&I (P&ID) Schema der neuen Schwachgasbehandlungsanlage

Anlage 6 Richtpreisangebot der Fa. Göbel GmbH

Anlage 7 Ingenieurangebot der Eisenlohr Energie & Umwelttechnik GmbH

Anlage 8 Mesprotokolle Blatt Nr. 1-10

Anlage 9 Tiefengestaffelte Untersuchung Deponie Venneberg

ABKÜRZUNGSVERZEICHNIS

NKI: Nationale Klimaschutzinitiative des Bundesumweltministeriums.

FOD: First Order Decay (FOD)

oTS/t: organische Trocken Substanz in kg je Tonne

IPCC: Intergovernmental Panel on Climate Change (IPCC) in Genf

1. TITEL DES VORHABENS

Technologien zur aeroben in-situ-Stabilisierung der Deponie Venneberg des Landkreises Emsland (Kommunalrichtlinie 2.12.4).

Hierzu die Potentialstudie zur Reduzierung von Treibhausgasemissionen aus Siedlungsabfalldeponien.

2. ANGABEN ZUM PROJEKT

2.1 AUFTRAGGEBER

Landkreis Emsland Ordeniederung 1 49716 Meppen

Ansprechpartner:

Herr Christopher Krämer (Abfallwirtschaftsbetrieb Landkreis Emsland)

Tel.: 05931 5996-156

E-Mail: christopher.kraemer@awb-emsland.de

Der Landkreis Emsland (Antragsteller) ist Genehmigungsinhaber und Betreiber der Deponie Venneberg.

2.2 STANDORT DES VORHABENS

Zentraldeponie Venneberg

Deponieart: Siedlungsabfalldeponie (Deponie Klasse I u. II)

Bramscher Straße 50

49811 Lingen

2.3 STAMMDATEN DER DEPONIE VENNEBERG

Der Landkreis Emsland betreibt seit 1976 die Haldendeponie Venneberg in 49811 Lingen. Die Deponie wurde mit Planfeststellungsbeschluss vom 29.05.1975 genehmigt. Auf einer Grundfläche von ca. 11,55 ha wurde in den Jahren ab 1976 bis 2009 ein Abfallvolumen von insgesamt ca. 1,7 Mio. m³ verbaut.

2.4 ZULASSUNGEN – GENEHMIGUNGEN

Datum	Bescheide
29.05.1975	Planfeststellungsbeschluß Gesamtdeponie
24.09.1997	KrWG Plangenehmigung Entgasung Bauabschnitte I-VII
26.08.1999	BImSchG Genehmigung Verdichterstation Gasfackel
04.07.2001	BImSchG NBauO Baugenehmigung Deponiegasnutzung Nachtrag Statik
01.12.2010	Stilllegung der Deponie Venneberg
26.01.2012	KrWG AbfG Plangenehmigung Sicherung und Rekultivierung der Deponie
06.05.2019	Feststellung des Abschlusses der Stilllegung: Beginn der Nachsorgephase

3. BESTANDSAUFNAHME

3.1 STANDORTGEGEBENHEITEN

Deponie Venneberg Verfüllungszeitraum:

Abfallmengen /-masse von 1976 bis 2009:

Hausmüll gesamt:	ca. 502.464 Mg
Sperimüll gesamt:	ca. 180.430 Mg
Gewerbeabfälle:	ca. 1.372.640 Mg
Bauabfälle:	ca. 335.861 Mg
Gesamte Ablagerungen:	ca. 2.391.395 Mg
Berechnetes Hausmülläquivalent: ca.	1.553.527 Mg

(vgl. Anlage 4: Tabelle der abgelagerten Abfälle

Abbildung 1: Luftbild Deponie Venneberg [Google Maps]

Gemäß DepV wird der dauerhafte Schutz des Bodens und des Grundwassers durch die Kombination aus geologischen Barrieren und einem Basisabdichtungssystems im Ablagerungsbereich gewährleistet.

Aufbau (Basisabdichtung): Abfall/mineralische Entwässerungsschicht mit Drainrohren / Kunststoffdichtungsbahn d > 2,5 mm/2 mineralische Abdichtungskomponenten / Geologische Barriere

Je nach Abschnitt sind unterschiedliche Abdichtungssysteme vorhanden, die immer mit dem jeweiligen Stand der Technik gebaut wurden.

Oberflächenabdichtung: Rekultivierungsschicht / Entwässerungsschicht / Kunststoffdichtungsbahn / mineralische Abdichtungskomponente / Ausgleichsschicht

Die Deponie Venneberg ist komplett mit einer Oberflächenabdichtung ausgestattet.

Das anfallende Sickerwasser wird separat erfasst und in einer geeigneten Kläranlage am Standort behandelt.

Die nachfolgende Tabelle zeigt den Verlauf der Sickerwassermenge:

Jahr	Sickerwassermenge [m³]	Veränderung zum Vorjahr
2013	37.562	
2014	24.972	-34%
2015	8.729	-65%
2016	8.256	-5%
2017	8.306	1%
2018	7.298	-12%
2019	7.363	1%
Durchschnitt 2013-2019	14.641	
Durchschnitt 2017-2019	7.656	

Die am Standort gemessene Sickerwassermenge stammt allerdings nicht ausschließlich von der Deponie. Einige Lagerflächen entwässern ebenfalls in das der Kläranlage vorgeschaltete Pumpwerk. Eine mengenmäßige Trennung ist nicht möglich.

Nachdem die Deponie 2014 komplett mit einer Oberflächenabdichtung ausgestattet wurde, ging das Sickerwasseraufkommen signifikant zurück.

3.2 Kurzbeschreibung der Deponieentgasungseinrichtungen

Auf der Deponie Venneberg betreibt der Landkreis Emsland eine Deponieentgasungsanlage, bestehend aus einer Verdichteranlage mit einem nachgeschaltetem BHKW. Für Ausfallzeiten des BHKWs steht eine Hochtemperaturfackel zur Verfügung.

Inbetriebnahme der Deponieentgasung	1999
Entgasungssystem:	"aktive Entgasung" – Absaugung des gefassten De- poniegases mittels Gebläse
Gasfassungssysteme:	vertikale Gasbrunnen
• Anzahl:	30 Stück
Gassammelsystem:	4 Gassammelstationen
Verdichterstation	2 Drehkolbengebläse mit max. 500 m³/h für motorische Verwertung und Fackelanlage
Gasverwertung	BHKW mit maximaler Leistung von 311 kW _{el}
Gasbehandlung:	Hochtemperaturfackel der Fa. Haase GmbH Feuerungsleistung: 5 MWtherm

Auf der Deponie befinden sich 30 vertikale Gasbrunnen, welche im Einzelanschluss über vier Gassammelstationen mit der Verdichteranlage verbunden sind. Nach der Verdichterstation wird das Deponiegas dann entweder dem BHKW oder der HTV Fackel zugeführt.

Die Gasregelstationen wurden in Betonbauweise errichtet. Sämtliche überirdischen Rohrleitungen wurden in PE-EL ausgeführt. Alle elektrisch leitenden Bauteile sind geerdet. Die gesamte Deponiefläche kann damit flächenhaft entgast werden.

3.3 OPTIMIERUNG DER BESTEHENDEN TECHNISCHEN EINRICHTUNGEN

3.3.1 GASREGELSTATION

Die vorhandenen vier Gasregelstationen befinden sich in einem guten Zustand. Die Gebäude wurden als Beton-Fertiggebäude erstellt und beinhalten Gassammelbalken und Regelstrecken aus elektrisch leitfähigem PE-EL (2 Gassammelstationen) und Stahl verzinkten Regelstrecken (2 Gassammelstationen).

Die Gasregelstrecken sind einheitlich in DN 50 ausgeführt. Mit der vorhandenen Nennweite von DN 50 ist nur eine sehr grobe Einstellung der Absaugmenge möglich, damit können kleine Gasmengen nicht eingestellt werden. Daher schlagen wir vor, die Messstrecken auf DN 25, passend zu den zurückgegangenen Gasmengen, umzurüsten.

3.3.2 GASVERDICHTERANLAGE

Die Gasverdichteranlage wurde in einem Betongebäude errichtet. Das Deponiegas wird durch zwei Drehkolbenverdichter mit einer Maximal-Leistung von 1.000 m³/h verdichtet und dem BHKW bzw. der Fackelanlage zugeleitet. Die Gasverdichteranlage zeigt dem Alter der Anlage entsprechende Mängel auf. Außerdem sind die Verdichter inzwischen um Faktor 5 überdimensioniert. Damit ist ein unnötig großer Stromverbrauch verbunden.

3.3.3 GASBEHANDLUNGSANLAGE

Die Gasverdichteranlage ist mit einer Hochtemperaturfackel der Fa. Haase ausgerüstet. Der Gasdurchsatz beträgt ca. 200 Nm³/h bis 1.000 Nm³/h. Die kleinste thermische Leistung dieser Anlage beträgt ca. 300 kW. Die Fackelanlage ist zwischenzeitlich zu groß dimensioniert um im Arbeitsbereich > 30 Vol.-% CH4 das schwächer werdende Deponiegas dauerhaft zu behandeln.

3.3.4 GASVERWERTUNG

Das noch vorhandene BHKW Firma pro2, Modell: LM 616K8 weist eine Leistung von 311 kW_{el} auf. Die Anlage kann ab einem CH_4 -Gehalt von ca. 42 Vol.-% betrieben werden. Die Anlage wurde 2005 errichtet und weist dem Alter entsprechend einige Mängel auf.

Durch die zurückgehende Gasmenge und Gasqualität wurde das BHKW in den letzten Jahren nur in geringem Umfang genutzt.

3.3.5 SICKERWASSERREINIGUNGSANLAGE

Das auf der Deponie Venneberg anfallende Sickerwasser wird komplett in der Sickerwasserkläranlage Venneberg gereinigt. Die wasserrechtlichen Überwachungswerte werden eingehalten.

Die folgende Abbildung zeigt die Monats- und Jahresmittelwerte der Analysewerte für die Sickerwasserkläranlage. Die Proben werden aus dem Zulauf der Kläranlage entnommen und bestehen aus sämtlichen Betriebsabwässern des Standortes inkl. Lagerflächen und Biomassevergärungsanlage. Es wurden keine Auffälligkeiten bei den Analysewerten festgestellt.

Rohsickerwass	er Mon	ats-/	Jahre	smitte	elwer	te								
Labor		Eigenko	ontrollen											
							20	19						
Monat/ Jahr		Jan	Feb	Mrz	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	2019
pH-Wert		8,0	8,1	8,0	8,1	7,8	8,0	8,2	8,1	8,3	8,3	8,2	8,2	8,1
Leitfähigkeit	mS/cm	3,00	4,88	5,20	4,14	5,08	5,50	6,50	5,81	5,16	4,08	4,10	3,90	4,78
CSB	mg/l O ₂	1.103	1.170	1.194	1.287	1.988	1.371	1.159	878	844	1.203	1.193	1.250	1.220
BSB ₅	mg/l O ₂	102	146	130	129	307	289	145	57	39	90	216	129	148
Nitritstickstoff	mg/l N	1,96	0,19	0,53	0,40	0,30	0,18	0,28	0,15	0,18	0,18	0,22	0,40	0,41
Nitratstickstoff	mg/l N	14,10	5,90	8,70	6,80	6,20	5,50	6,30	5,30	7,40	5,00	4,30	5,50	6,75
Ammoniumstickstoff	mg/l N	229	256	260	315	397	327	301	256	243	261	248	293	282
Phosphat-Phosphor	mg/l P	6,78	7,97	7,80	7,60	8,40	8,60	7,35	6,20	4,90	9,20	9,53	8,20	7,71
Jahr		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
pH-Wert		8,1	8,1	8,0	8,0	8,0	8,1	8,1	8,1	8,1	8,2	8,2	8,1	8,1
Leitfähigkeit	mS/cm	6,91	7,93	7,28	6,81	6,95	6,51	6,64	6,66	5,69	6,25	5,47	5,38	4,8
CSB	mg/l O ₂	1.081	1.219	1.270	1.200	1.217	1.097	1.273	1.944	1.494	1.238	1.273	1.341	1220,0
BSB ₅	mg/l O ₂	98	117	94	86	114	79	130	331	185	98	120	144	148,3
Nitritstickstoff	mg/l N	0,37	0,39	0,59	0,49	0,82	0,64	0,57	0,45	1,32	2,00	0,86	1,17	0,4
Nitratstickstoff	mg/l N	4,91	6,34	6,46	5,31	6,93	6,93	5,59	7,66	6,10	14,95	11,84	7,75	6,8
Ammoniumstickstoff	mg/l N	451	490	446	434	458	394	415	425	373	367	330	274	282,2
Phosphat-Phosphor	mg/l P	2,95	3,55	3,43	3,16	4,51	4,33	5,51	12,09	8,74	7,19	8,42	7,92	7,7

3.3.6 DEPONIEGASSITUATION

Die Deponie Venneberg befindet sich bereits am Anfang der sogenannten Lufteindringphase. Das heißt, die Halbwertszeiten der Gasentstehung nehmen immer weiter zu, die Gaserfassung zeigt bei geringem Unterdruck bereits einen geringer werdenden CH₄-Anteil, die Gasbildung erfolgt mit abnehmendem CO₂- Gehalt.

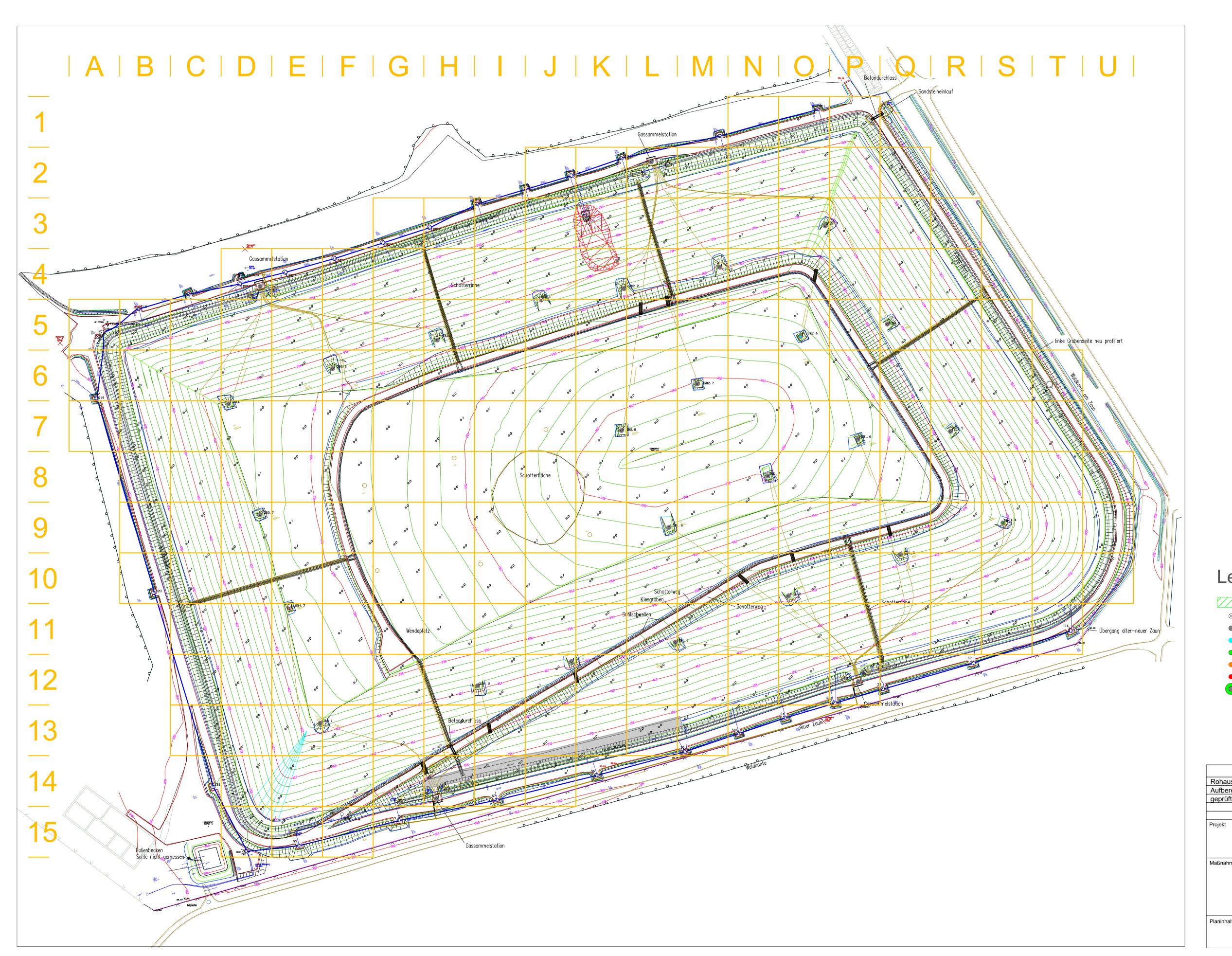
Die Deponie Venneberg ist komplett mit einer Oberflächen - Endabdichtung ausgestattet.

Nach den Ergebnissen der letzten FID-Messung vom April 2020 (Abbildung 2) zeigte die Deponie Venneberg mit der erfassten Gasmenge im Mittel 58 m³/h keine Gasemissionen an den Flächen, die mit Endabdichtung abgedeckt sind.

Die zunehmende Schwachgasbildung ist verantwortlich für den starken Rückgang der zur Verwertung geeigneten Deponiegasmenge.

Zahlreiche Gasbrunnen weisen nur noch einen CH₄-Gehalt unter 35 Vol.-% auf. Diese Gasbrunnen können mit der aktuellen Gasverwertung nicht mehr besaugt werden.

Um weiterhin den optimalen Zustand einer gasfreien Oberfläche gewährleisten zu können, sollte die Entgasungsanlage konstant betrieben werden.


Mit der vorhandenen Gasbehandlungsanlage ist eine Gasbehandlung unterhalb des CH₄ Grenzwertes von ca. 40 Vol.-% technisch nicht möglich.

Des Weiteren zeigt die Entgasungsanlage altersbedingt immer häufiger Störungen im Regelbetrieb auf und kann deshalb keinen kontinuierlichen Entgasungsbetrieb mehr gewährleisten.

3.3.7 SETZUNGEN

Die Setzungen betrugen in den letzten 6 Jahren zwischen 0 und 21 cm. Setzungen in dieser Größenordnung werden für das Oberflächenabdichtungssystem als unkritisch beurteilt.

Die Deponieoberfläche wurde am 16.07.2019 begangen. Auffälligkeiten oder Hinweise auf Setzungen bzw. Verformungen des Oberflächenabdichtungssystems konnten augenscheinlich nicht festgestellt werden.

Legende

Gebiet nicht begehbar

Messpunkt nicht begehbar

0 - 3 ppm4 - < 10 ppm

• 10 - < 100 ppm

100 - < 1000 ppm>= 1000 ppm

Brunnen, Schächte etc: Konzentration am Rand / innen Farbcodierung wie oben

	Zeichen	Datum	Aufgestellt:			
Rohauswertung	KL	04/2020	ODOCON GbR			
Aufbereitung	JSK	05/2020	Amtsstr. 7			
geprüft	KL	05/2020	22143 Hamburg			
			040/325 185 50 info@odocon.de	ODOCON Emissionsmanagement und Analytik		
Projekt				Blatt Nr.		
De	Deponie Venneberg					
Maßnahme	Bericht Nr.					
FID- 07./0	2020/28					
Planinhalt:	Blattformat A 1					

3.4 MONITORING DER DEPONIE VENNEBERG

Die Einstellung und der Betrieb der Deponieentgasungsanlage erfolgen wöchentlich. Die FID-Messungen werden 2 x jährlich vorgenommen.

Die technischen Einrichtungen der Entgasungsanlage wurden regelmäßig geprüft und gewartet. Das Sickerwassersammelsystem wurde gereinigt und mit Kamera befahren. Untersuchungen zur Bewertung der Leistungsfähigkeit der Gasbrunnen liegen vor. Die Hauptsetzungen der Deponie sind abgeklungen.

Das vorliegende Monitoring Programm muss hinsichtlich der Überwachung der Entgasungsanlage den Anforderungen der NKI¹ angepasst werden.

3.5 BISHERIGE MAGNAHMEN

Im Rahmen der Potentialanalyse wurde das Entgasungssystem komplett vermessen und eingestellt. Die Gasmenge konnte hierdurch bereits gesteigert werden. Außerdem wurde ein Absaugversuch, sowie eine tiefengestaffelte Untersuchung der einzelnen Gasbrunnen durchgeführt. Das gesamte System wurde im Rahmen einer Konzeption hinsichtlich einer zukunftsfähigen, sicheren und wirtschaftlichen Betriebsweise untersucht.

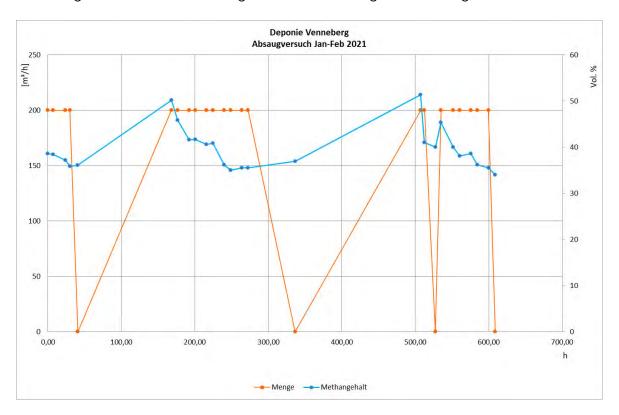
3.6 TIEFENGESTAFFELTE UNTERSUCHUNG

Bei der tiefengestaffelten Untersuchung wurde an ausgewählten Gasbrunnenköpfen eine zeitlich begrenzte Entnahme von Deponiegas mit Messung der Gasqualität über Zeit und Tiefe durchgeführt. Das Ziel dieser Untersuchung ist die Feststellung der Gaszusammensetzung über die Gesamttiefe. Um sicherzustellen, dass keine Defekte am Zentralrohr des Gasbrunnen vorliegen, wurde dieser zuerst mit einer Kamera befahren.

Die Untersuchung ergab, dass keine Defekte am Zentralrohr oder Auffälligkeit bei der Gaszusammensetzung festgestellt wurden. An allen betriebenen Gasbrunnen, sinkt die Gasqualität mit zunehmender Tiefe. Alle Gasbrunnen auf der Deponie Venneberg befinden sind in einem guten Zustand und sind einsatzbereit.

Die Messergebnisse sind in Anlage 9 zusammengefasst.

_


¹ NKI: Nationale Klimaschutzinitiative des Bundesumweltministeriums

3.7 ABSAUGVERSUCH

Zur Ermittlung der erfassbaren Gasmengen wurde von Januar 2021 bis Februar 2021 ein Absaugversuch vorgenommen.

In der folgenden Grafik sind die Ergebnisse des Absaugversuchs dargestellt:

Die Fackel-Anlage wurde nach einer anfänglichen Testphase mit einer konstanten Gasmenge von 200 m³/h betrieben. In den Erholungspausen lief die Anlage nicht.

Die Feuerungsleistung während des Fackelbetriebs betrug im Durchschnitt ca. 800 kW_{th}.

Die Auswertung des Absaugversuchs zeigt folgende Ergebnisse:

Auswertung						
Absaugversuch Deponie Venneberg 2021						
Absaugversuch von 0 bis 30 h						
Absaugrate (gemittelt)		Nm³/h				
2 Tage	30					
Absaugvolumen	6.000					
Gaserzeugung bei CH4 60%	106,5	Nm³/h				
Abzug Gaserzeugung	1.917	Nm³				
Rückgang CH4						
Anfang	38,6	Vol%				
Ende	35,8	Vol%				
relativ	7,25%					
Porenvolumen	56.287	Nm³				
Pause von 41 bis 168 h						
3 Tage	127	h				
Anstieg CH4						
Anfang	35,8	Vol%				
Ende	E0 2	Vol%				
Ende	50,2	V OI. 70				
absolut		Vol%				
		Vol%				
absolut	14,40 8.105	Vol%				
absolut Volumen Methan	14,40 8.105	Vol% Nm³				
absolut Volumen Methan	14,40 8.105	Vol% Nm³ Nm³/h				
absolut Volumen Methan Entstandene Methanmenge	14,40 8.105 63,8	Vol% Nm³ Nm³/h				
absolut Volumen Methan Entstandene Methanmenge CH4 Gehalt	14,40 8.105 63,8	Vol% Nm³ Nm³/h % Nm³/h				
absolut Volumen Methan Entstandene Methanmenge CH4 Gehalt Deponiegasmenge bei CH4 (60%)	14,40 8.105 63,8 60 106,4	Vol% Nm³ Nm³/h % Nm³/h				
absolut Volumen Methan Entstandene Methanmenge CH4 Gehalt Deponiegasmenge bei CH4 (60%)	14,40 8.105 63,8 60 106,4	Vol% Nm³ Nm³/h % Nm³/h				
absolut Volumen Methan Entstandene Methanmenge CH4 Gehalt Deponiegasmenge bei CH4 (60%)	14,40 8.105 63,8 60 106,4	Vol% Nm³ Nm³/h % Nm³/h kW				

Auswertung Absaugversuch Deponie Vennebe						
Absaugversuch Deponie verniebe	erg 2021					
Absaugversuch von 0 bis 30 h						
Absaugrate (gemittelt)	200	Nm³/h				
T = 4 Tage	104,5	h				
Absaugvolumen	20.900	Nm³				
Gaserzeugung bei CH4 60 %	81,0	Nm³/h				
Abzug Gaserzeugung	5.079	Nm³				
Rückgang CH4						
Anfang	50,2	Vol%				
Ende	35,5	Vol%				
relativ	29,28%					
Porenvolumen	54.029	Nm³				
Pause von 41 bis 168 h						
4 Tage	176	h				
Anstieg CH4						
Anfang		Vol%				
Ende	51,3	Vol%				
absolut	15,80	Vol%				
Volumen Methan	8.537					
Entstandene Methanmenge	48,5	Nm³/h				
CH4 Gehalt	60	0/2				
Deponiegasmenge bei CH4 (60%)		Nm³/h				
Feuerungsleistung	485					
. castangololotang	-100	1.77				
BHKW	485	kW				
	160					

Ermitteltes Gaspotential:

106,5 m³/h 81 m³/h

im Mittel ca. 94 Nm³/h bei CH₄ Gehalt 60 Vol.-%.

Ermittelte Feuerungsleistung:

638 kW 485 kW

Im Mittel ca. 561 kW

3.8 AUFGABENSTELLUNG

Anlass für die vorliegende Potentialstudie war, zugeschnitten auf die standortspezifischen Gegebenheiten, technisch und wirtschaftlich machbare Wege zur Minimierung klimaschädlicher Methanemissionen aufzuzeigen. Dies umfasst in einem ersten Schritt die Analyse bestehender Einrichtungen und deren Potential zur Verbesserung der Deponiegaserfassung. Zudem ist eine Ermittlung des Deponiegasbildungspotentials nach dem Modell der IPCC Guidelines zur Bewertung des Emissionspotentials enthalten.

Nach Abschluss der thermischen Schwachgasbehandlung soll die Minimierung klimarelevanter Methanemissionen durch eine Aerobisierung (Umstellung auf aerobe Verhältnisse) erfolgen. Das in der Folge oxidativer Abbauprozesse anstelle von Methan entstehende Kohlenstoffdioxid hat ein ca. 28-fach geringeres Treibhaushauspotential wie Methan und ist zudem, da überwiegend biogenen Ursprungs, als weitgehend klimaneutral einzustufen.

Eine durch kontinuierliche Entgasung erlangte entsprechende Belüftung der Deponie (-abschnitte) hat zugleich eine Beschleunigung der Umsetzungsprozesse zur Folge und trägt zur In Situ Stabilisierung bei.

4. POTENTIALANALYSE

4.1 ZUSTANDSERFASSUNG DEPONIEGASERFASSUNGSSYSTEM

ERGEBNISSE DER ÜBERPRÜFUNG DES ENTGASUNGSSYSTEMS vom 14.10.2020

Die Messergebnisse der Überprüfung des Entgasungssystems sind in Anhang 8 - Messprotokolle Blatt Nr. 1 - 10 dokumentiert.

Die Auswertung der Messdaten vom 14.10.2020 ergibt folgende Zusammenhänge:

Erfasste Gesamtgasmenge

Am 14.10.2020 wurde die HTV-Fackel mit ca. 200 Nm³/h betrieben. Die Handmessung ergab ca. 178 Nm³/h.

• Gasqualität an Analyseanzeige:

Vor/nach der Überprüfung:

54,4 / 52,2 Vol.-% CH₄ 28,5 / 29,4 Vol.-% CO₂ 0,2 / 0,2 Vol.-% O₂

Verteilung der erfassten Gesamtgasmengen

Gas s ammels telle	Gas menge Nm²/h	in % Gesamt
GS S 1	24,5	13,8%
GSS2	68,6	38,6%
GSS3	48,9	27,5%
GSS4	35,8	20,1%
Summe	177,8	100,0%

Der Verteilung zugrunde gelegt wurde die aus der Handmessung berechnete Gasmenge von ca. 177,8 Nm³/h.

Abgesaugte Gasfassungselemente (GFE)

29 der 30 angeschlossenen GFE wurden zum Zeitpunkt der letzten Überprüfung ordnungsgemäß abgesaugt.

Gasfassungselemente mit einem CH4 -Gehalt über 50 % Vol.%

An 23 der 29 abgesaugten GFE konnte ein CH₄-Gehalt über 50 Vol.-% gemessen werden.

• Gasfassungselemente mit einem CH4 -Gehalt zwischen 30 und 50 Vol.-%

Optimal abgesaugt mit einem Methangehalt zwischen 30 und 50 Vol.-% wurden 6 der 29 abgesaugten GFE.

Nicht abgesaugte Gasfassungselemente

Der Gasbrunnen B 4.3 wurde aufgrund zu geringer Gasqualität nicht abgesaugt.

• Defekte Gasfassungselemente

Bei der Funktionskontrolle wurden keine Leitungsdefekte festgestellt.

• Zusammenfassung der Funktionsprüfungen

Auf der Deponie Venneberg befinden sich insgesamt 30 GFE, davon angeschlossen an die Entgasung sind 30 GFE.

Davon sind 29 Gasbrunnen ordnungsgemäß in Betrieb.

ERGEBNISSE DER ÜBERPRÜFUNG DES ENTGASUNGSSYSTEMS vom 23.02.2021

Die Messergebnisse der Überprüfung des Entgasungssystems sind in Anhang 8 - Messprotokolle Blatt Nr. 1 - 10 dokumentiert.

Die Auswertung der Messdaten vom 23.02.2021 ergibt folgende Zusammenhänge:

Erfasste Gesamtgasmenge

Am 23.02.2021 wurde die HTV-Fackel mit ca. 200 Nm³/h betrieben. Die Handmessung ergab ca. 178,3 Nm³/h.

• Gasqualität an Analyseanzeige:

Vor/nach der Überprüfung:

35,8 / 41,0 Vol.-% CH₄ 21,7 / 20, CO₂ 0,0 / 0,2 Vol.-% O₂

Verteilung der erfassten Gesamtgasmengen

Gassammelstelle	Gasmenge Nm³/h	in % Gesamt
GSS1	34	19,1%
GSS2	75,3	42,2%
GSS3	40,5	22,7%
GSS4	28,5	16,0%
Summe	178.3	100.0%

Der Verteilung zugrunde gelegt wurde die aus der Handmessung berechnete Gasmenge von ca. 178,3 Nm³/h.

• Abgesaugte Gasfassungselemente (GFE)

25 der 30 angeschlossenen GFE wurden zum Zeitpunkt der letzten Überprüfung ordnungsgemäß abgesaugt.

Nicht abgesaugte Gasfassungselemente

5 GFE wurden aufgrund zu geringer Gasproduktion nicht abgesaugt und sind stillgelegt.

• Gasfassungselemente mit einem CH4 -Gehalt über 50 % Vol.%

Bei 5 der 25 abgesaugten GFE konnte ein CH_4 -Gehalt über 50 Vol.-% gemessen werden.

Gasfassungselemente mit einem CH4 -Gehalt zwischen 30 und 50 Vol.-%

Optimal abgesaugt mit einem Methangehalt zwischen 30 und 50 Vol.-% wurden 8 der 25 abgesaugten GFE.

• Defekte Gasfassungselemente

Bei der Funktionskontrolle wurden keine Leitungsdefekte festgestellt.

Zusammenfassung der Funktionsprüfungen

Auf der Deponie Venneberg befinden sich insgesamt 30 GFE, davon angeschlossen an die Entgasung sind 30 GFE.

Davon sind 25 Gasbrunnen ordnungsgemäß in Betrieb.

ERGEBNISSE DER ÜBERPRÜFUNG DES ENTGASUNGSSYSTEMS vom 25.05.2021

Die Messergebnisse der Überprüfung des Entgasungssystems sind in Anhang 8 - Messprotokolle Blatt Nr. 1 - 10 dokumentiert.

Die Auswertung der Messdaten vom 25.05.2021 ergibt folgende Zusammenhänge:

• Erfasste Gesamtgasmenge

Am 25.05.2021 wurde die HTV-Fackel mit ca. 200 Nm³/h betrieben. Die Handmessung ergab ca. 210,3 Nm³/h.

• Gasqualität an Analyseanzeige:

Vor/nach der Überprüfung:

53,3 / 48,4 Vol.-% CH₄ 23,7 / 22,0 Vol.-% CO₂ 0,0 / 0,1 Vol.-% O₂

• Verteilung der erfassten Gesamtgasmengen

Gassammelstelle	Gasmenge Nm³/h	in % Gesamt
GSS1	37,6	17,9%
GSS2	85,1	40,5%
GSS3	53,3	25,3%
GSS4	34,3	16,3%
Summe	210,3	100,0%

Der Verteilung zugrunde gelegt wurde die aus der Handmessung berechnete Gasmenge von ca. 210,3 Nm³/h.

Abgesaugte Gasfassungselemente (GFE)

28 der 30 angeschlossenen GFE wurden zum Zeitpunkt der letzten Überprüfung ordnungsgemäß abgesaugt.

• Nicht abgesaugte Gasfassungselemente

2 GFE wurden aufgrund zu geringer Gasproduktion nicht abgesaugt und sind stillgelegt.

Gasfassungselemente mit einem CH4 -Gehalt über 50 % Vol.%

Bei 8 der 28 abgesaugten GFE konnte ein CH_4 -Gehalt über 50 Vol.-% gemessen werden.

• Gasfassungselemente mit einem CH4 -Gehalt zwischen 30 und 50 Vol.-%

Optimal abgesaugt mit einem Methangehalt zwischen 30 und 50 Vol.-% wurden 17 der 28 abgesaugten GFE.

• Defekte Gasfassungselemente

Bei der Funktionskontrolle wurden keine Leitungsdefekte festgestellt.

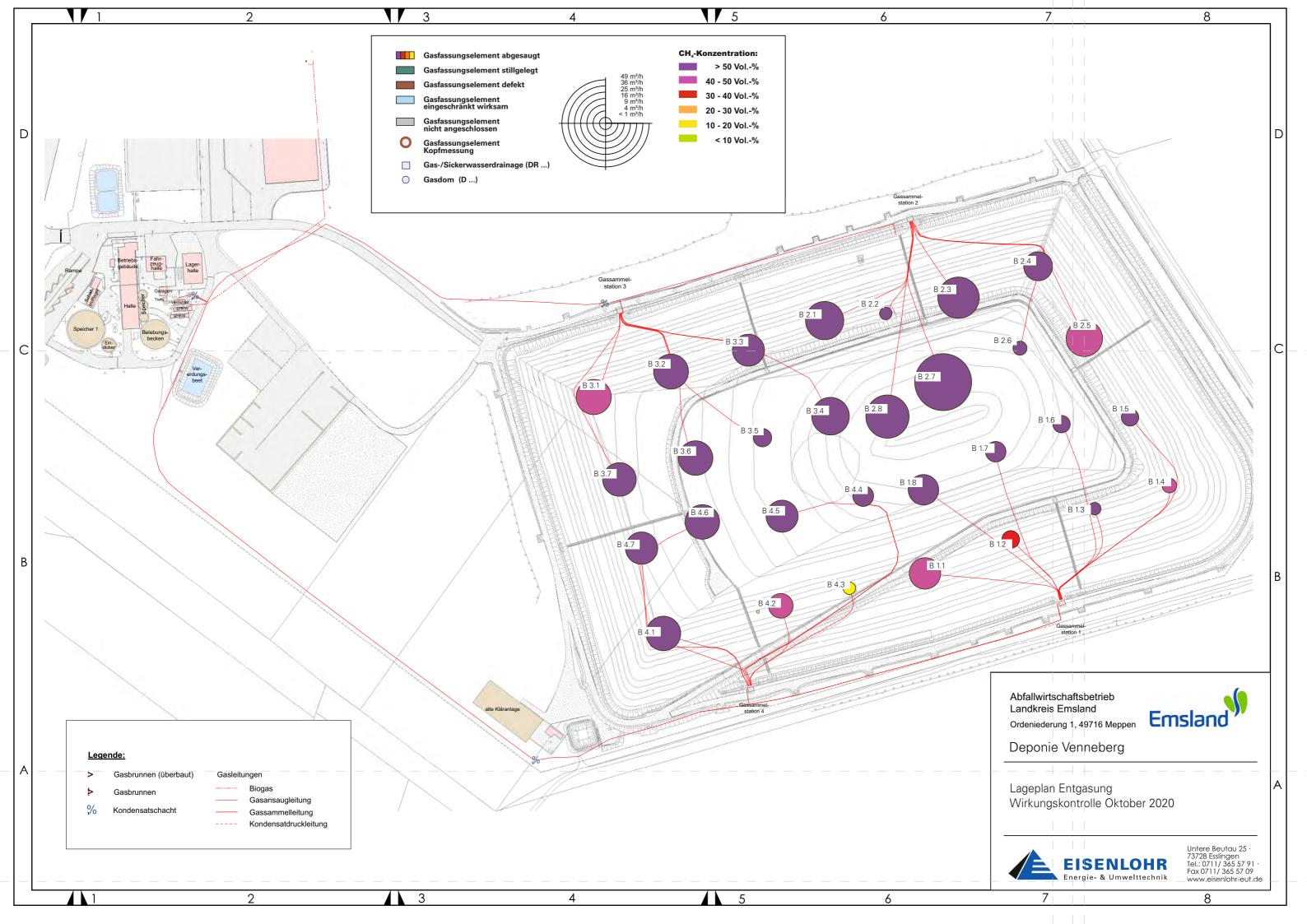
• Zusammenfassung der Funktionsprüfungen

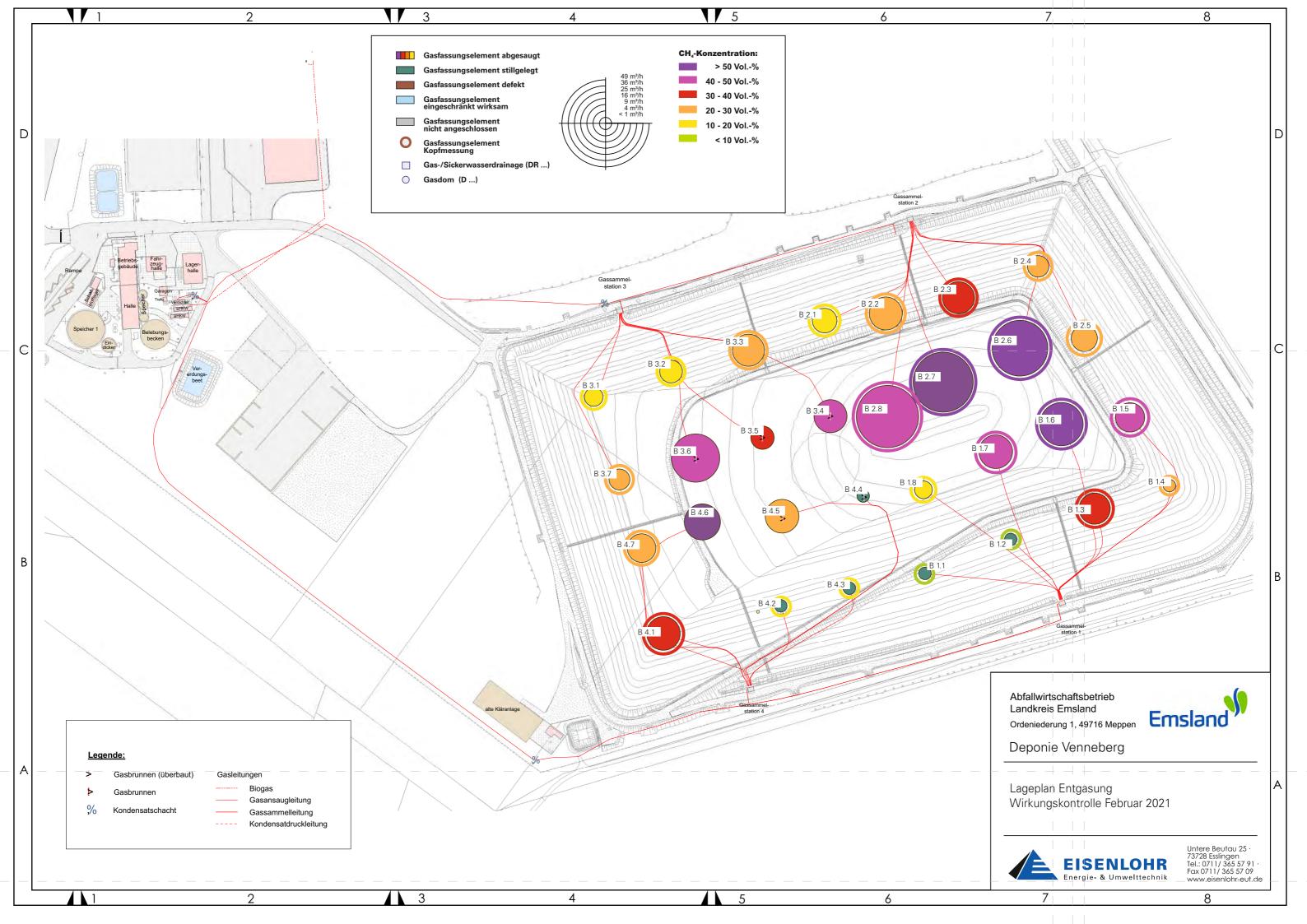
Auf der Deponie Venneberg befinden sich insgesamt 30 GFE, davon angeschlossen an die Entgasung sind 30 GFE.

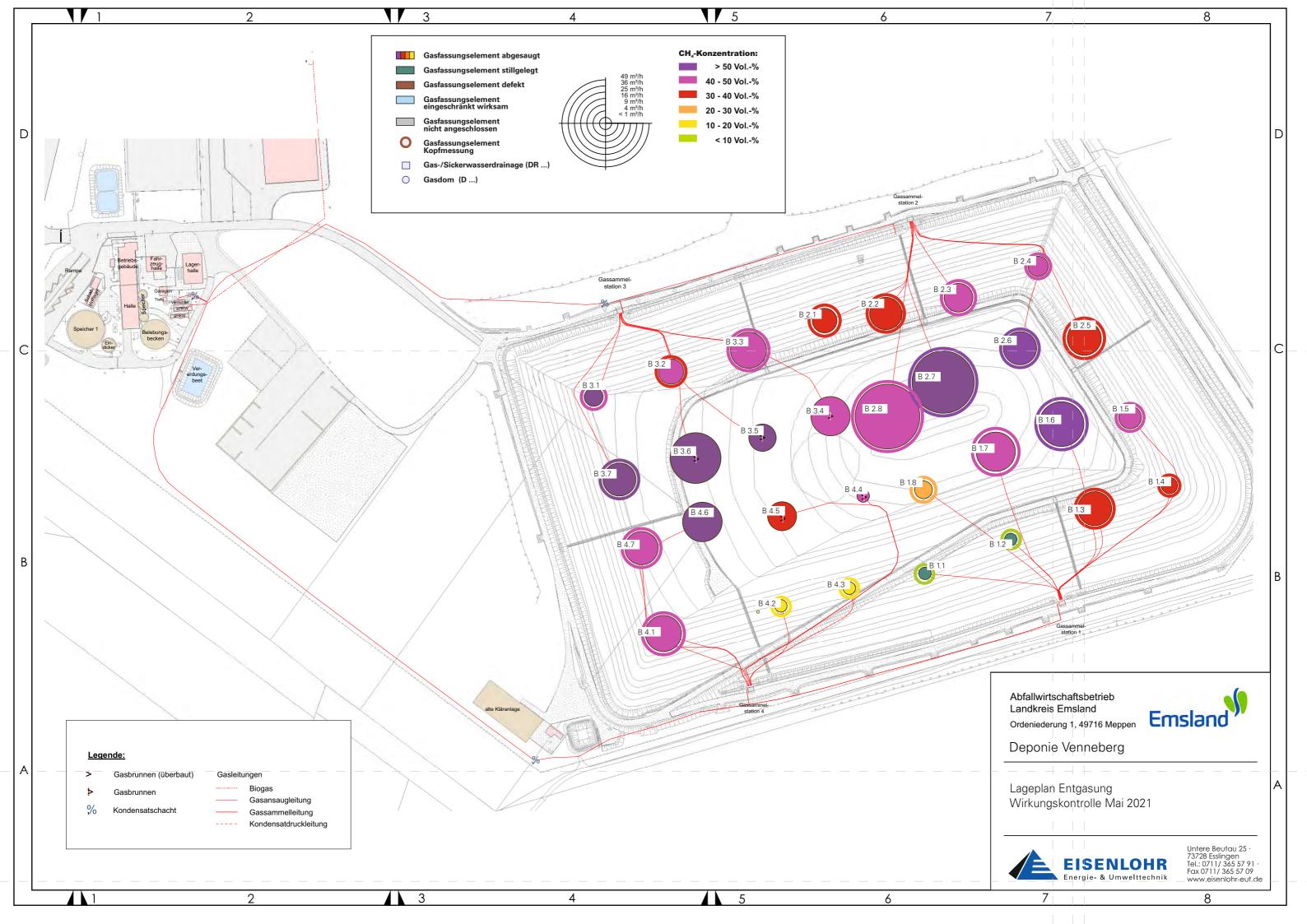
Davon sind 28 Gasbrunnen ordnungsgemäß in Betrieb.

4.2 BEURTEILUNG DER GESAMTSITUATION

Abbildung 4, Abbildung 5 und Abbildung 6 auf den folgenden Seiten zeigen die grafische Darstellung der Gaserfassung auf der Deponie Venneberg. Dargestellt ist die erfasste Gasmenge je Gaskollektor nach der Einstellung der Anlage.


Die Kreisflächen entsprechen den jeweils erfassbaren Gasmengen. Die Farbe der Flächen zeigt gestaffelt die erfassbare Gasqualität. Dargestellt werden auch Gasbrunnen, die nicht abgesaugt werden (grün) sowie Gasbrunnen ohne Funktion (grau).


Die Grafik zeigt eine ausgewogene Verteilung der Gasbrunnen.


Nahezu alle Gasfassungselemente haben die gleiche Gasqualität an der Gassammelstation und den Gasbrunnenköpfen. Dies deutet darauf hin, dass keine Defekte am Gasfassungssystem vorhanden sind.

Die zunehmende Schwachgasbildung ist verantwortlich für den starken Rückgang der zur Verwertung geeigneten Deponiegasmenge.

Zahlreiche Gasbrunnen weisen während eines kontinuierlichen Regelbetriebs nur noch einen CH₄-Gehalt unter 35 Vol.-% auf. Diese Gasbrunnen können mit der aktuellen Gasverwertung nicht mehr besaugt werden.

4.3 GASPROGNOSE - THEORETISCHES EMISSIONSPOTENZIAL

Auf Grundlage der Gasprognose nach FOD² wird das verbleibende Emissionspotential der Deponie berechnet.

Grundlagen und Annahmen:

oTS³-Anteil: 180 kg biologisch abbaubarer Kohlenstoff pro t Hausmülläquivalent

Halbwertszeit: anfänglich 6 Jahre, ab 2005 ansteigend auf 8 Jahre

Gasproduktion (ungestört): bei CH₄ -Konzentration 50 Vol.-%, ca. 30 Vol.-% CO₂, Rest N₂

Ablagerungsmenge: ca. 1.390.265 Mg Hausmülläquivalent

Ablagerungszeitraum (Hausmüll): 1976 – 2005 (siehe Tabelle in Anlage 4)

Bei der FOD-Methode nach IPCC4 (Guidelines 1996) wird für die Gasprognose eine Halbwertszeit von t 1/2 = 7,5 Jahren zugrunde gelegt. Diese Halbwertszeit konnte bei der Gasprognose für die Deponie Venneberg bestätigt werden. Der hier dargestellte Verlauf der Gasmengenentwicklung machte in der Verfüllphase den rechnerischen Ansatz von 6 Jahren für die Halbwertszeit notwendig. Durch den Abbau der leicht abbaubaren Substanzen verbleiben im Laufe der Jahre die schlechter bzw. langsamer abbaubaren Substanzen im Deponiekörper. Hierdurch nimmt die biologische Aktivität ab, d.h. die Halbwertszeit schrittweise verlängert auf ca. 8 Jahre.

Durch die Anpassung der zu erwartenden Halbwertszeiten bildet die nachstehend dargestellte Gasprognose diese Entwicklung nach.

In **Abbildung 7** ist die Prognose der von der Deponie Venneberg seit 1979 bis ca. 2026 gebildeten Deponiegasmengen dargestellt.

Die Gasproduktion unterliegt jahreszeitlichen Schwankungen. Diese werden unter anderem durch unterschiedliche Temperaturen und Niederschläge verursacht. Für die weitere Betrachtung werden Jahresmittelwerte der Gasproduktion zugrunde gelegt.

_

² First Order Decay (FOD)

³ oTS/t organische Trocken Substanz in kg je Tonne

⁴ Intergovernmental Panel on Climate Change (IPCC) in Genf

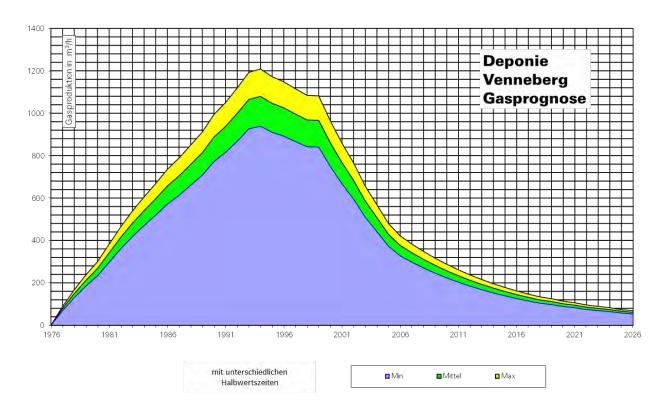


Abbildung 7: Gasprognose 1976 bis 2026:

Für das Jahr 2020 ergibt sich eine Gasproduktion von minimal ca. 88 m³/h, im Mittel ca. 101 m³/h sowie maximal 114 m³/h ($CH_4=40\ Vol.-\%$).

Die Milieubedingungen können als konstant betrachtet werden.

4.4 ERFASSTE DEPONIEGASMENGEN – 2004 - 2020

In der folgenden <u>Abbildung 8</u> ist die Gasmengenerfassung der Deponie Venneberg von 2005 bis 2020 im Vergleich zur Prognose der Gaserfassung dargestellt. Die Deponiegaserfassung erreichte von Anfang an nie die Prognose der erfassbaren Gasmengen.

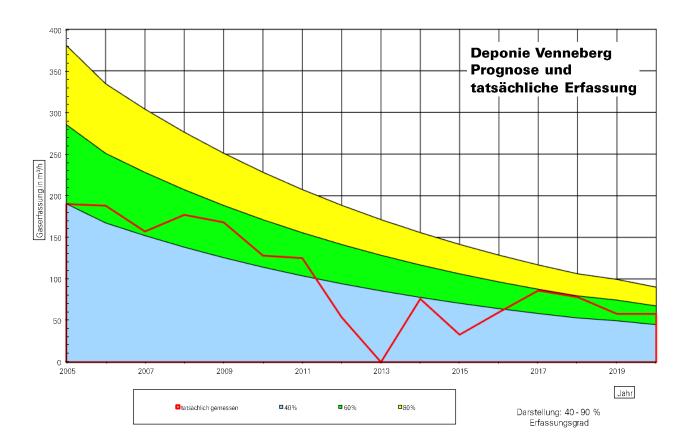


Abbildung 8: Erfasste Gasmengen im Vergleich zur Gasprognose (CH₄ = 40 Vol.-%)

Eingetragen wurde in die Grafik der tatsächliche Verlauf der Erfassung ab 2004 bis 2020. Im Jahr 2020 wurde die Entgasungsanlage im Mittel mit ca. 58 m³/h Deponiegas und einem CH₄ - Gehalt von ca. 42 Vol.-% betrieben.

Die prognostizierte, theoretisch erfassbare Gasmenge im Jahr 2020 liegt nach diesem Prognosemodell - je nach Erfassungsgrad - bei:

- ca. 45 m³/h (40 %-iger Erfassungsgrad),
- ca. 68 m³/h (60 %-iger Erfassungsgrad),
- ca. 90 m³/h (80 %-iger Erfassungsgrad),

Im Jahr 2020 wurde ein Erfassungsgrad von lediglich ca. 51 % ermittelt.

4.5 BERECHNUNG DES OTS GEHALTS

Abfallmengen und Abfallzusammensetzung

Die auf der Deponie Venneberg zwischen 1976 und 2005 abgelagerten Mengen an Hausmüll bzw. hausmüllähnlichen Abfällen sind im <u>Anlage 4</u> zusammengefasst.

Verbliebene biologisch abbaubare organische Substanzen

Die verbliebenen organischen Substanzen der Deponie werden auf Grundlage der Gasprognose nach FOD und der durchgeführten Absaugversuche und Messungen berechnet.

Ablagerungszeitraum (Hausmüll): 1976 – 2005 Verfülltes Gesamtvolumen: ca. 1.700.000 m³ Verfüllte Gesamtmenge: (berechnet) ca. 2.391.395 Mg Ablagerungsmenge Hausmülläquivalent: 1.553.527 Mg

Aus der Berechnung der Gasprognose nach IPCC wurde das Restpotential der für die zukünftige Gasproduktion verbliebenen Restorganik ermittelt.

Halbwertszeit: am Anfang 6 Jahre 5 , ansteigend auf 8 Jahre im Jahr 2030 Reaktionsgleichung 1. Ordnung.

Das im Jahr 2020 verbliebene in Hausmülläquivalent betrug: 52.453 Mg. oTS-Anteil: 180 kg biologisch abbaubarer Kohlenstoff pro to Hausmülläquivalent.

Ablagerungsmenge in der genehmigten Deponie 2.391.395 Mg.

Der oTS Gehalt wird berechnet aus der tatsächlich noch vorhandenen anaerob aktiven Substanz gemäß der noch entstehenden Gasmenge unter Berücksichtigung der tatsächlichen Halbwertszeit. Aus der nach dieser Berechnung ermittelten Hausmülläquivalenz ergibt sich unter Einbeziehung der Standartwerte der Gasprognose nach FOD (180 kg oTS) der verbliebene biologisch abbaubare Kohlenstoff-Gehalt der Deponie. Durch Division mit der abgelagerten Gesamtmenge ergibt sich der oTS Gehalt je Mg Ablagerungsmenge:

Berechnung oTS/Mg - im Jahr 2020

52.453 Mg x 180 kg/Mg / 2.391.395 = **3,95 kg oTS/Mg** Ablagerungsmenge

⁵ aus der tatsächlichen Gasmengentwicklung berechnet

4.6 WEITERE ENTWICKLUNG DER GASERFASSUNG

Die aktuelle Entwicklung der Gaserfassung zeigt, dass auf der Deponie Venneberg die Gasqualität im Betrieb der Anlage abnimmt.

Zukünftig wird die Anzahl der Gasbrunnen mit schwachem Gas weiter zunehmen. Diese Gasbrunnen sollten aber zur Aufrechterhaltung des Unterdrucks im Deponiekörper weiter in Betrieb gehalten werden.

Hierdurch kommt es zu einer generellen Absenkung des CH₄-Gehalts an der Hauptgassammelstelle.

Die Entgasungsanlage wird derzeit durch den notwendigen CH₄-Gehalt des vorhandenen BHKWs limitiert. Die Bezugsgröße für die Einstellung ist der CH₄-Gehalt, dieser darf minimal 42 Vol.-% betragen.

Mit dem vorhandenen BHKW ist daher eine Verwertung unterhalb des CH₄-Grenzwertes von ca. 42 Vol.-% technisch nicht möglich.

Aufgrund der geringen Gasbildungsrate auf der Deponie Venneberg, kann eine Verwertung des Deponiegases wirtschaftlich nicht mehr umgesetzt werden (Abfallwirtschaftsfakten 19.1). Aus diesem Grund muss eine Umstellung von Deponiegasnutzung auf Deponiegasentsorgung erfolgen.

Die aktuelle FID Messung bei Betrieb der Anlage zeigt keine Emissionen auf der Deponieoberfläche. Um diesen optimalen Zustand aufrecht zu erhalten, sollte die Anlage ständig betrieben werden können.

Nach derzeitigem Kenntnisstand muss die Gasbehandlung noch bis ca. 2042 betrieben werden.

Zur Aufrechterhaltung eines kontinuierlichen Entgasungsbetriebs muss daher der Methanarbeitsbereich (bisher 40 - 60 Vol.-%), in einer neuen Behandlungsanlage neuester Technologie, auf 3,0 Vol.-% abgesenkt werden. Dabei kann der im Laufe der Jahre absinkende CH_4 -Gehalt bis zu einer Konzentration von 3,0 Vol.-% Methan behandelt werden. Durch die von der EEUT angestrebte Betriebsweise werden zukünftig alle gasführenden Gasbrunnen besaugt.

Die nachfolgende **Abbildung 9** zeigt die mögliche Gaserfassung bis 2042 mit unterschiedlichen CH₄ Gehalten an:

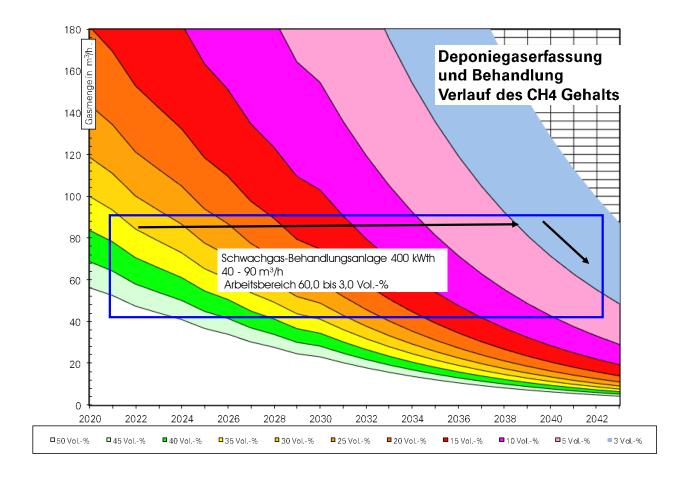


Abbildung 9: Gasprognose und Behandlung bis 2042

Die Grafik zeigt die Umstellung der Entgasung auf in-Situ-Stabilisierung. Unter Beibehaltung einer kontinuierlichen Absaugmenge (zwischen 40 und 90 m³/h) wird der für die Entgasung notwendige Unterdruck im Deponiekörper weiter aufrechterhalten. Der erfassbare CH₄-Gehalt sinkt im Laufe der Jahre auf Werte von ca. 3,0 Vol.-%.

Eingetragen in die Grafik wurde die geplante Dimensionierung einer Schwachgasbehandlungsanlage mit Wärmeauskopplung (SGA).

5 MABNAHMENKATALOG FÜR TECHNISCHE UMSETZUNG

5.1 GASVERDICHTERANLAGE UND GASBEHANDLUNGSANLAGE

Die Entgasungsanlage der Deponie Venneberg ist voraussichtlich noch bis 2042 zu betreiben.

Eine neue Gasbehandlungsanlage sollte dem niedrigen Heizwert und der niedrigen Heizleistung entsprechend bereits jetzt als Schwachgasfackel bzw. Behandlungsanlage ausgeführt werden. Je geringer der untere Arbeitsbereich festgelegt wird, desto länger kann die Anlage genutzt werden. Aufgrund des hohen Wärmebedarfs auf dem Standort soll eine Schwachgasbehandlungsanlage mit Wärmeauskopplung realisiert werden.

Anforderung an die Anlage:

Gasmenge 40 - 90 m 3 /h, Feuerungsleistung 40 - 400 kW, max. CH $_4$ - Gehalt 60 Vol.-%, minimaler CH $_4$ - Gehalt 3,0 Vol.-%.

Die notwendige Betriebsdauer der neuen Anlage beträgt aus heutiger Sicht ca. 18 - 22 Jahre. Daher ist eine Schwachgasbehandlungsanlage (SGA) mit 3,0 Vol.-% zu präferieren.

5.2 GASBRUNNEN UND GASREGELSTATION

Die Rohrdurchmesser der bisherigen Gasregelstrecken sind zu groß für eine genaue Mengenmessung und Einstellung.

Aus diesem Grund ist es vorgesehen die Gasregelstrecken aus DN50 in DN25 zu ersetzen.

In der Gassammelstation 1 und 4 sind noch alle Gasleitungen in Stahl-verzinkt ausgeführt. Die Gasregelstrecken und die Gassammelbalken sollen zukünftig in PE-EL ausgeführt werden.

Die vorhandenen Gasbrunnen befinden sich in einem sehr guten Zustand. Es besteht hier kein Optimierungsbedarf.

5.3 IN SITU STABILISIERUNG

Die Nachsorgezeit kann ohne In Situ-Stabilisierung bis zu 50 Jahre nach Ablagerungsende betragen.

Zur Verkürzung der Gasphase wurden verschiedene Belüftungstechniken zur in-Situ-Stabilisierung entwickelt.

Alle Verfahren haben gemeinsam, dass durch eine Vergrößerung der abgesaugten Deponiegasmenge mit oder ohne separate Zuluftführung der Deponiekörper aerobisiert wird und dadurch die biologischen Prozesse im Deponiekörper beschleunigt werden. Somit kann die anaerobe Biologie früher abgeschlossen werden.

Das BMUB fördert im Rahmen der Nationalen Klimaschutzinitiative (NKI) aktuell die Projekte zur In Situ Stabilisierung mit 60 % der Investkosten sowie mit ca. 25 % der Planungskosten.

Zuerst wurde das sogenannte Aeroflott-Verfahren entwickelt.

5.3.1 Aeroflott Verfahren

Das von der Fa. IFAS entwickelte Verfahren beinhaltet die gleichzeitige Besaugung und Belüftung des Deponiekörpers.

Im Vergleich zur reinen anaeroben Biologie wird hierbei die bis zu 10-fache Luftmenge in den Deponiekörper eingeblasen und abgesaugt und einer regenerativen thermische Oxidation (RTO) bzw. einer katalytischen Verbrennung zugeführt.

Technisch wird das Verfahren umgesetzt durch zahlreiche neue Gasbrunnen, die gezielt verteilt werden, um alle Bereiche des Deponiekörpers zu belüften.

Nachteil des Verfahrens ist die doppelte Ausführung der Anlagentechnik (Entgasung und Belüftungstechnik), die mit hohen Kosten verbunden ist.

Ein weiterer Nachteil besteht darin, dass diese Anlagentechnik nach der erfolgten Belüftung rückgebaut werden muss und durch eine neue Minimal-Lösung zur Behandlung der noch immer entstehenden Restgase ersetzt werden muss.

Vorteil des Verfahrens ist die Verkürzung der Nachsorge im Gashaushalt auf ca. 8 Jahre (Faktor 1/6).

Im Vergleich zu den beiden anderen vorgestellten Verfahren ist der Invest und Betriebskostenaufwand jedoch um den Faktor 4 höher (geschätzt 1,5 – 2,4 Mio. €).

5.3.2 Inspiro Verfahren

Das von der Fa. contec entwickelte Verfahren beinhaltet die gezielte Übersaugung des Deponiekörpers mit der Maßgabe das CH₄ / CO₂ Verhältnis im Deponiekörper gezielt unter

1 bzw. sogar unter 0,5 zu verändern. Hierzu wird die Absaugrate im Vergleich zur bisherigen Entgasung um ca. den Faktor 5 erhöht. Die Absaugrate ist wesentlich höher als die Deponiegasneubildung, hierdurch werden ca. 80 % Fremdluft in den Deponiekörper eingesogen. Das Entgasungssystem wird in der Regel nicht umgebaut.

Im Vergleich zur reinen anaeroben Biologie wird hierbei die bis zu 4-fache Luftmenge in den Deponiekörper eingesaugt. Das erfasste Deponiegas wird einer flammenlosen Verbrennung bzw. einer katalytischen Verbrennung zugeführt.

Nachteil des Verfahrens ist die ungezielte Zuführung der Fremdluft über das Sickerwassersammelsystem bzw. über die Oberfläche, ein weiterer Nachteil sind die Inkrustationen im Sickerwassersystem.

Vorteil des Verfahrens ist die Verkürzung der Nachsorge im Gashaushalt auf ca. 16 – 20 Jahre (Faktor $\frac{1}{2}$).

Im Vergleich zum DepoFit® Verfahren ist der Invest und Betriebskostenaufwand jedoch ca. um den Faktor 1,5 - 2 (geschätzt 0,8 – 1,2 Mio. €) höher.

5.3.3 DepoFit® Verfahren

Grundlage des DepoFit[®] Verfahrens ist die konstante Absaugung mit der Gasmenge, die erforderlich ist, beständig alle Emissionen der Deponie zu vermeiden.

Die Gaserfassungsraten werden durch die Stärke der Absaugung entscheidend beeinflusst. Bei einer Absaugung mit konstanter Gasmenge kann der Unterdruck auf ein gewünschtes Maß eingestellt werden. Die anaerobe biologische Aktivität im Deponiekörper nimmt im Laufe der Zeit ab. Durch die konstante Absaugung nimmt der erfassbare CH_4 -Gehalt im Deponiekörper beständig ab, dafür wird zunehmend Fremdluft eingetragen. Die Prozesse im Deponiekörper werden hierdurch beschleunigt. Es kommt zu einer maßvollen Erhöhung der Temperatur sowie zu einer Befeuchtung (Wasserbildung) durch die Oxidation von Wasserstoff zu H_2O .

Das von der Eisenlohr Energie und Umwelttechnik (EEUT) entwickelte DepoFit® Verfahren bewirkt durch die angepasste Auslegung eine nachhaltige Wirkungsweise der Entgasung über sehr lange Zeiträume. Das Verfahren gliedert sich in drei Phasen (sh. Abbildung 9 auf der folgenden Seite):

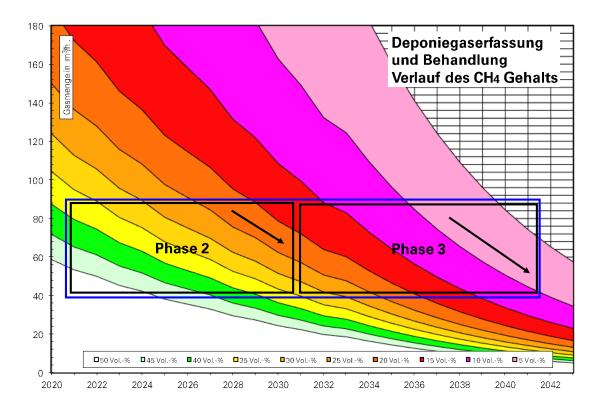


Abbildung 10: DepoFit® Verfahren

Phase 1 (CH₄-Gehalt 50 bis 40 Vol.-%):

Die Phase 1 ist bereits abgeschlossen.

Phase 2 (CH₄-Gehalt 40 bis 25 Vol.-%):

In der Phase 2 wird die noch vorhandene Gasverwertung auf Schwachgasnutzung ($CH_4 > 25 \text{ Vol.-}\%$) umgebaut, die Gasmenge wird bis zum optimalen Gaserfassungsgrad erhöht, der CH_4 -Gehalt wird auf ca. 25 Vol.% abgesenkt.

Nach Abschluss der Phase 2 erfolgt die schrittweise Absenkung des CH₄ Gehalts mit einer konstanten, kontinuierlichen Absaugung.

Phase 3 (CH₄-Gehalt 25 bis 3,0 Vol.-%):

In der Phase 3 wird mit der gleichbleibenden Gasmenge der Phase 2 der CH₄ - Gehalt bis auf 3,0 Vol.-% abgesenkt.

Die konstante Gasmenge zur Behandlung bewirkt einen konstanten Unterdruckaufbau im Deponiekörper. Der CH₄-Gehalt sinkt logarithmisch über die Jahre entsprechend der zurückgehenden Gaserzeugung im Deponiekörper.

Dadurch erfolgt ein zunehmender Fremdlufteintrag in den Deponiekörper, der eine zunehmende Aerobisierung des Deponiekörpers bewirkt.

Durch die Beschleunigung der Abbauprozesse und durch die zunehmende Aerobisierung wird gegenüber der bisherigen Entgasungstechnik eine Verkürzung der Nachsorgephase bei der Entgasung erreicht.

Die Auslegung einer neuen Behandlungsanlage erfolgt daher ebenfalls mit ca. 40 - 90 m³/h. Dadurch kann diese Anlage für wenigstens 20 Jahre betrieben werden und berücksichtigt dabei die lange Behandlungsdauer von schwer abbaubaren Stoffen im Deponiekörper.

Im Vergleich zu herkömmlichen Belüftungsverfahren erscheint dieses Vorgehen hinsichtlich der Betriebskosten und der Investitionskosten wesentlich wirtschaftlicher als die bislang auf dem Markt angebotenen Belüftungsverfahren (ca. 0,4 – 0,6 Mio. €).

6 KOSTENSCHÄTZUNG

Es sind die folgende Kostenblöcke zu berücksichtigen (netto):

A: Schwachgasbehandlungsanlage:

Deponieschwachgasverbrennungsanlage 400 kW in stehender Bauweise, Abgas Luftwärmetauscher, einschließlich aller Nebenaggregate und

Abgaswasserwärmetauscher einschließlich Wasserkreislauf: 339.210 Euro

Rückbau Altanlage: 5.000 Euro

Die Kosten A betragen somit: 344.210 Euro

B: Ausbau Entgasungsanlage:

Anpassen der Gasregelstation, Umbau von Stahl-Verzinkt in PE-EL

Gassammelstelle 30 Anschlüsse 60.000 Euro

<u>Die Kosten B betragen somit:</u>
60.000 Euro

Summe A+B (netto) ca. 404.210 Euro

Förderfähige Nebenkosten (aus A+B): 20.211 Euro

C: Umstellung des Entgasungsbetriebes – Einfahrbetrieb

Umstellung des Absaugbetriebes In Situ Stabilisierung,

einschließlich Berichtserstellung und Monitoring 20.000 Euro

<u>Die Kosten C betragen somit:</u>
20.000 Euro

Summe förderfähig (netto) ca. 444.421 Euro

7. MÖGLICHE EMISSIONSMINDERUNG

Zur Berechnung der möglichen Emissionsminderungen werden die aus der Gasprognose für die nächsten 21 Jahre zu erwartende Deponiegasbildung und die daraus entstehenden Methanmengen für die gesamte Deponie ermittelt.

7.1 METHANBILDUNG

Aus der Gasprognose wurden folgende mögliche Gasemissionen abgeleitet:

	Gasbildung nach Gasprognose			
Jahr	Gasprognose m³/h	CH4 Gehalt	Jahresmenge m³ Summe gesam	
2021	95	40%	329.441	329.441
2022	85	40%	297.290	626.731
2023	80	40%	276.959	903.691
2024	74	40%	257.262	1.160.952
2025	66	40%	230.256	1.391.208
2026	61	40%	213.198	1.604.406
2027	55	40%	189.938	1.794.344
2028	50	40%	174.014	1.968.358
2029	44	40%	154.413	2.122.771
2030	42	40%	145.241	2.268.012
2031	37	40%	127.744	2.395.756
2032	32	40%	112.356	2.508.112
2033	28	40%	98.821	2.606.933
2034	25	40%	86.917	2.693.850
2035	22	40%	76.446	2.770.296
2036	19	40%	67.237	2.837.533
2037	17	40%	59.138	2.896.671
2038	15	40%	52.014	2.948.685
2039	13	40%	45.748	2.994.433
2040	12	40%	40.237	3.034.670
2041	10	40%	35.390	3.070.060
2042	9	40%	31.127	3.101.186

Zu erwartende Methanbildung gesamt 3.101.186 m³,

Im Vergleich zu der durch die aktuelle Deponieentgasungsanlage erfassbaren Gasmenge ergibt sich das Emissionsminderungspotential.

Nicht herangezogen wird die Methanoxidation über die Oberflächenabdeckung der Deponie.

7.2 VERGLEICH MIT BESTANDSANLAGE

In nachstehender Tabelle sind die mit der Bestandsanlage erfassbaren Methanmengen gelistet.

	Gasbehandlung mit Bestandsanlage				
Jahr	Gasmenge m³/h	CH4 Gehalt Vol%		Summe gesamt	
	(m³/h)	(Vol%)	(m³)	(m³)	
2021	58	42%	209.496	209.496	
2022	53	42%	192.109	401.605	
2023	49	42%	176.164	577.769	
2024	45	42%	161.543	739.313	
2025					
2026	Dotriol	Betrieb der Anlage altersbedingt nicht mehr möglich			
2027					
2028	- Illetii i	- menr mogrici			
2029					
2030					
2031					
2032					
2033					
2034					
2035					
2036					
2037					
2038					
2039					
2040					
2041					
2042					

Zu erwartende Methanerfassung mit bisheriger Anlagentechnik: 739.313 m³.

Nach erfolgter Optimierung der Einstellung der Entgasung ergibt sich gegenüber der Gasprognose ein Emissionsminderungspotential im Zeitraum 2021 – 2042 um:

Vergleich Gasprognose und bisherige Erfassung 2.361.873 m³

Entspricht 1.693 Mg

oder CO₂ Äquivalenz 47.417 Mg

7.3 VERGLEICH MIT NEUER SCHWACHGASBEHANDLUNGSANLAGE

	Depofit Verfahren			
Jahr	Gasmenge m³/h	CH4 Gehalt Vol%	Summe a m³	Summe gesamt m³
	(m³/h)	(Vol%)	(m³)	(m³)
2021	90	37%	291.439	291.439
2022	90	35%	272.246	563.686
2023	90	31%	245.677	809.363
2024	90	29%	228.876	1.038.239
2025	90	27%	212.598 1.250.83	
2026	90	24%	190.281	1.441.118
2027	90	23%	176.184	1.617.303
2028	90	20%	156.962	1.774.265
2029	90	18%	143.803	1.918.069
2030	90	16%	127.605	2.045.673
2031	90	15%	120.025	2.165.699
2032	90	13%	105.567	2.271.265
2033	90	12%	92.850	2.364.115
2034	90	10%	81.665	2.445.780
2035	90	9%	71.827	2.517.607
2036	90	8%	63.174	2.580.781
2037	90	7%	55.564	2.636.345
2038	90	6%	48.871	2.685.216
2039	90	5%	42.984	2.728.200
2040	90	5%	37.806	2.766.005
2041	90	4%	33.251	2.799.257
2042	90	4%	29.246	2.828.502

Zu erwartende Methanerfassung 2.828.502 Nm³.

Nach dem Umbau zur Schwachgasbehandlung ergibt sich gegenüber der Bestandsanlage ein Emissionsminderungspotential im Zeitraum 2020 – 2042

Vergleich Bestand und Depofit

Bestand: 739.313 m³

Depofit mit SGA 2.828.502 m³

Emissionsminderung absolut
2.089.189 m³
entspricht
1.916 Mg
entspricht
in %
88 %

oder CO₂ Äquivalenz 53.642 Mg

8. CONTROLLING-KONZEPT ZUR IN SITU STABILISIERUNG

8.1 GASFÖRDERSTATION UND SCHWACHGASBEHANDLUNGSANLAGE

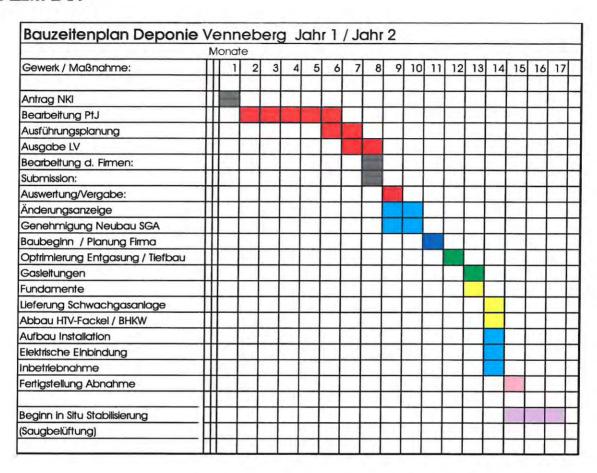
Die Schwachgasbehandlungsanlage wird mit allen notwendigen Überwachungen ausgerüstet. Vorgesehen ist die Überwachung der Gaszusammensetzung, der Gasmenge, Gasund Luftdruck, Verbrennungstemperatur, Betriebszeiten und Feuerungsleistung.

Sämtliche Betriebs- und Alarmzustände werden angezeigt und archiviert. Die neue Anlage erhält auch eine Fernüberwachung und -bedienung.

8.2 WIRKUNGSKONTROLLEN UND FUNKTIONSPRÜFUNGEN

Nach Abschluss der Inbetriebnahme werden am Entgasungssystem zunächst wöchentliche, dann monatliche Einstellungen und Überprüfungen vorgenommen. Gasbrunnen mit Überdruck werden mit kleinen Gasmengen in Betrieb gehalten, die Einstellung erfolgt unter Beachtung des CH₄/CO₂-Verhältnisses zur maximalen Unterdruckbildung im Deponiekörper.

Die Emissionssituation soll während des Monitorings im halbjährlichen Turnus mittels LAS-Messungen untersucht werden.


8.3 BERICHTE ZUM ANLAGENBETRIEB

Zusammenfassung und Auswertung der Messergebnisse der Überprüfung des Entgasungssystems (Funktionsprüfungen der Gasbrunnen) und der LAS-Messung.

- Auswertung des Einflusses der Erhöhung der Gasmenge auf die Gaszusammensetzung der Parameter CH₄, CO₂, O₂
- Temperaturmessungen an den Gasbrunnen
- Auswertung der Druckverhältnisse im Deponiekörper
- Interpretation der Ergebnisse: Zusammenhang LAS-Messung gefasste Gasmengen an den einzelnen Gasfassungsstellen technischer Zustand und Funktionsfähigkeit des Entgasungssystems
- Bewertung der Entgasungssituation
- Interpretation der Ergebnisse der Deponiegasuntersuchungen
- Bilanzierung Gesamt-C über CH₄- und CO₂-Frachten.
- Berechnung der Emissionsminderung gegenüber dem Referenzszenario.

9. ZEITPLAN

Nach positivem Förderbescheid soll mit der Planung begonnen und die Ausführung vorgenommen werden.

Aufgestellt:

Elseniohr Energie & Umwelttechnik

Esslingen, den 19.07.2021

Martin Eisenlohr

LANDKREIS EMSLAND

ORDENIEDERUNG 1

D-49716 MEPPEN

Der Landkreis Emsland bestätigt die Richtigkeit der gemachten Angaben zur Potentialstudie und der anschließenden Vorhabenbeschreibung

Bevollmächtigter des Landkreis Emsland

Herr Harald Litz

Meppen, den 30. 07-2021 Landkreis Forsland

Unterschrift

ANLAGENVERZEICHNIS

- Anlage 1: Referenzliste der Eisenlohr Energie und Umwelttechnik
- Anlage 2: Stellungnahme der Genehmigungsbehörde zum geplanten Vorhaben
- Anlage 3: Lageplan neue Gasbehandlungsanlage
- Anlage 4: Tabelle der abgelagerten Abfälle
- Anlage 5: R&I (P&ID) Schema der neuen Schwachgasbehandlungsanlage
- Anlage 6: Richtpreisangebot der Fa. Göbel GmbH
- Anlage 7: Ingenieurangebot der Eisenlohr Energie & Umwelttechnik GmbH
- Anlage 8: Messprotokolle Blatt Nr. 1-10
- Anlage 9: Tiefengestaffelte Untersuchung Deponie Venneberg

Anlage 1: Referenzliste der Eisenlohr Energie und Umwelttechnik

ANLAGE

REFERENZLISTE DER EISENLOHR ENERGIE UND UMWELTTECHNIK (STAND 2021) NATIONALE KLIMASCHUTZINITIATIVE- PROJEKTE SEIT 2014

DEPOFIT® VERFAHREN ZUR IN SITU STABILISIERUNG

Deponie Backnang-Steinbach Potentialanalyse 2021 Studie zur Optimierung der Gaserfassung

Derzeit ein BHKW installiert.

Auftraggeber: AWRM Abfallwirtschaft Rems-Murr AöR

Deponie Groptitz Potentialanalyse 2021 Studie zur Optimierung der Gaserfassung

Auftraggeber: Zweckverband Abfallwirtschaftsbetrieb

Oberes Elbtal (ZAOE)

Deponie Gröbern Potentialanalyse 2021 Studie zur Optimierung der Gaserfassung

Auftraggeber: Zweckverband Abfallwirtschaftsbetrieb

Oberes Elbtal (ZAOE)

Deponie Breinermoor

Neubau SGA mit Wärmeauskopplung 40-200 m 3 /h, 600 kW, < 6,0 Vol.-% CH $_4$

Auftraggeber: Abfallwirtschaftsbetrieb Landkreis Leer

Deponie Eichelbuck Potentialanalyse 2021 Studie zur Optimierung der Gaserfassung

Derzeit ein BHKW, 2 Mikrogasturbinen und eine HTV installiert.

Auftraggeber: Abfallwirtschaft und Stadtreinigung Freiburg GmbH

Deponie Nürnberg Süd Neubau Schwachaasanlage und Optimierung der Entgasung

Leistung 160 kW, max. 80 m³/h

Inbetriebnahme 2021

Auftraggeber: Abfallwirtschaftsbetrieb Stadt Nürnberg

Deponie Weißwasser "Grüne Fichte" Potentialanalyse 2021 Studie zur Optimierung der Gaserfassung

Auftraggeber: Regionaler Abfallverband Oberlausitz-

Niederschlesien RAVON

Deponie "Hufe" Potentialanalyse 2021 Studie zur Optimierung der Gaserfassung

Auftraggeber: Regionaler Abfallverband Oberlausitz-

Niederschlesien RAVON

Deponie Heuchelheim Klingen Baumaßnahmen 2021 Neubau Schwachgasbehandlungsanlage

Derzeit eine Haase Anlage installiert. Auftraggeber: EWW Südliche Weinstraße

Deponie Fludersbach Neubau Gasmotor

Arbeitsbereich ab 15 Vol.-% 250 kWel Inbetriebnahme: 2021, BK ca. € 300.000.--Auftraggeber: Kreis Siegen Wittgenstein

Deponie Hintere Dollert Baumaßnahme 2021

Umbau Gasmotor zum Schwachgasmotor, neue SGA 300 kW, Arbeitsbereich 3,0 Vol.-% Auftraggeber: Abfallwirtschaftsbetrieb Rastatt

Deponie Burghof Ausbau der Betriebsentgasung

Zusätzliche Gasbrunnen und neues BHKW 750 kW Inbetriebnahme: 2021, BK ca. € 950.000.--Auftraggeber: AVL Ludwigsburg mbH

Deponie Hintere Dollert Potentialanalyse 2020 Studie zur Optimierung der Gaserfassung

Derzeit ein BHKW installiert.

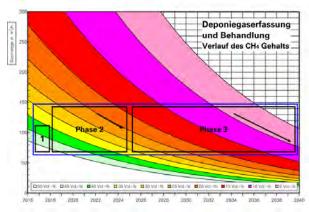
Auftraggeber: Abfallwirtschaftsbetrieb Rastatt

Deponie Reibertsbach Potentialanalyse 2020 Studie zur Optimierung der Gaserfassung

Derzeit zwei Gasturbinen installiert.

Auftraggeber: Abfallwirtschaftsbetrieb Birkenfeld

Deponie Dörpen und Venneberg Potentialanalyse 2020 Studie zur Optimierung der Gaserfassung


Derzeit eine e-flox Anlage bzw. BHKW installiert. Auftraggeber: Abfallwirtschaftsbetrieb Emsland

Deponie Flechum und Wesuwe Potentialanalyse 2019 Studie zur Optimierung der Gaserfassung

Derzeit 2 x SGF Fa. BMF Haase

Auftraggeber: Abfallwirtschaftsbetrieb Emsland

Deponie Fludersbach Neubau Schwachgasbehandlungsanlage und Optimierung Entgasung

Leistung 300 kW Methangehalt ab 6 Vol.-% Inbetriebnahme: 2020, BK ca. € 800.000.--Auftraggeber: Kreis Siegen Wittgenstein

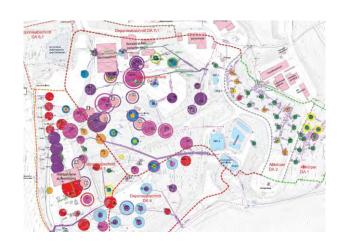
Deponie Burghof Potentialanalyse 2019 Studie zur Optimierung der Gaserfassung Auftraggeber: AVL Ludwigsburg mbH

Deponie Nürnberg Süd Potentialanalyse 2019 Studie zur Optimierung der Gaserfassung Derzeit Gasbehandlung HTV 300 KWel, 250 m³/h Auftraggeber: Stadt Nürnberg

Deponie Scheiderwald Neubau Schwachgasbehandlungsanlage und

Optimierung Entgasung
Leistung 150 kW Methangehalt ab 3 Vol.-%
Inbetriebnahme: 2019, BK ca. € 360.000.-Auftraggeber: Abfallwirtschaft Lahn Dill

Deponie Niedercunnersdorf und Radgendorf Potentialanalyse 2018/19 Studie zur Optimierung der Gaserfassung Derzeit Gasbehandlung HTV 750 KWel, 200 m³/h


Auftraggeber: RAVON Oberlausitz

Deponie Fludersbach
Potentialanalyse 2018/19
Studie zur Optimierung der Gaserfassung
Derzeit Gasverwertung 500 KWel, 320 m³/h
Auftraggeber: Kreis Siegen Wittgenstein

Deponie Leppe Potentialanalyse 2018 Studie zur Optimierung der Gaserfassung Derzeit Gasverwertung 900 KWel, 520 m³/h Auftraggeber: Bergische Abfallverband (BAV)

Deponie Schelderwald Potentialanalyse 2018 Studie zur Optimierung der Gaserfassung

Derzeit Gasbehandlung HTV 300 KWel, 50 $\,\mathrm{m}^3/\mathrm{h}$

Auftraggeber: Abfallwirtschaft Lahn Dill

Deponie Nadelwitz und Kunnersdorf Neubau Schwachgasbehandlungsanlage mit Wärmenutzung

Leistung 250 bzw. 300 kW Methangehalt ab 3 Vol.-% Inbetriebnahme: 2018, BK ca. € 600.000.--

Auftraggeber: RAVON Oberlausitz

Neubau
Deponie Stockstadt
Potentialanalyse 2017
Studie zur Optimierung der Gaserfassung
Derzeit Gasverwertung 250 KWel, 120 m³/h
Auftraggeber: Landkreis Aschaffenburg

Deponie Am Lemberg Investiver Antrag 2016 Neubau Schwachgasbehandlungsanlage mit Wärmenutzung Optimierung des Entgasungssystems

Leistung 500 kW Methangehalt ab 6 Vol.-% Inbetriebnahme: 2017, BK ca. € 900.000.--

Auftraggeber: AVL Ludwigsburg

Deponie Eichholz Potentialanalyse 2016 Investiver Antrag 2016 Neubau Schwachgasbehandlungsanlage mit Wärmenutzung

Leistung 1 MW, 500 m³/h, Methangehalt ab 6 Vol.-% Inbetriebnahme: 2017, BK ca. € 500,000,--

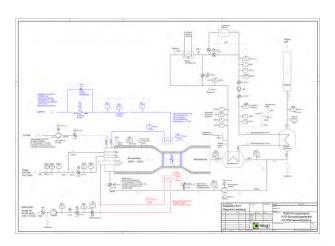
Auftraggeber: AWG Rems-Murr-Kreis mbH

Deponie Schorndorf Potentialanalyse 2014 Investiver Antrag 2014

Neubau Schwachgasbehandlungsanlage HTX Fa. Göbel Neubau zwei Gasbrunnen

BK ca. € 320.000

Leistung 60 m³/h, Methangehalt ab 6 Vol.-%


Inbetriebnahme: 2015

Auftraggeber: AWG Rems-Murr-Kreis mbH

Deponie Lichte Potentialanalyse 2015 Absaugversuch 2015

Leistung 80 m³/h, Methangehalt ab 16 Vol.-% Inbetriebnahme: 2015, BK ca. € 10.000.--Auftraggeber: AWG Rems-Murr-Kreis mbH

DEPONIEENTGASUNG/GASVERWERTUNG - PLANUNG/BAUAUSFÜHRUNG AB 2015 BIS 2018

Deponie Einöd

Neubau Schwachgasbehandlungsanlage SGF Fa. Haase

Leistung 50 m³/h, Methangehalt ab 6 Vol.-% Inbetriebnahme: 2018, BK ca. € 170.000.--

Auftraggeber: AWS Stuttgart

Deponie Eichholz

Reparaturen und Endausbau der Betriebsentgasung

Inbetriebnahme: 2018, BK ca. € 150.000.--Auftraggeber: AWG Rems-Murr-Kreis mbH

Deponie Burghof Ausbau der Betriebsentgasung

Zusätzliche Gasbrunnen Reparaturen Inbetriebnahme: 2018, BK ca. € 200.000.--Auftraggeber: AVL Ludwigsburg mbH

Deponie Fludersbach

Studie zur Gaserfassung und Gasverwertung 2018 Verbesserung der Gaserfassung Konzept zur neuen Gasverwertung

Deponie Winterbach Umbau BHKW zur Schwachgasnutzung

Leistung 130 kW, Methangehalt ab 25 Vol.-% Erhöhung der Gaserfassung um 100 % Inbetriebnahme: 2016, BK ca. € 40.000.--Auftraggeber: Kreis Siegen Wittgenstein

Deponie Hamberg Neubau BKW zur Schwachgasnutzung

Leistung 50 kW, Methangehalt ab 25 Vol.-% Inbetriebnahme: 2015, BK ca. € 140.000.--

Auftraggeber: HDG Enzkreis

Deponie Lichte Umrüstung mit CHC Schwachgasbehandlungsanlage

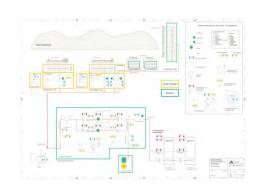
Leistung 80 m³/h, Methangehalt ab 16 Vol.-% Inbetriebnahme: 2015, BK ca. € 10.000.--Auftraggeber: AWG Rems-Murr-Kreis mbH

DEPONIEENTGASUNG/GASVERWERTUNG – PLANUNG/BAUAUSFÜHRUNG AB 2012 BIS 2015

Deponie Backnang-Steinbach Umbau BKW zur Schwachgasnutzung

Leistung 100 m³/h, Methangehalt ab 25 Vol.-% Inbetriebnahme: 2014, BK ca. € 30.000.--Auftraggeber: AWG Rems-Murr-Kreis mbH

Deponie Burghof Ausschreibung der neuen Gasverwertung


Leistung 1,2 MW, mit Wärmekonzept Inbetriebnahme: 2014, BK ca. € 600.000.--Auftraggeber: AVL Ludwigsburg mbH

Deponie Site d'Habay Belüftungsversuch zur Absenkung H₂S

Leistung 100 m³/h, H₂S Gehalt ca. 3.000 ppm Ausführung Oktober bis Feb. 2014 Auftraggeber: AIVE Arlon Belgien

Deponie Burghof Ausbau der Betriebsentgasung

Zusätzliche Gasbrunnen Umbau HGS Inbetriebnahme: 2013, BK ca. € 80.000.--Auftraggeber: AVL Ludwigsburg mbH

DEPONIEENTGASUNG/GASVERWERTUNG - PLANUNG/BAUAUSFÜHRUNG AB 2012 BIS 2016

Deponie Backnang-Steinbach Sanierung Entgasungssystem

Reparaturen und Abdichtungsarbeiten Inbetriebnahme: 2013, BK ca. € 20.000.--Auftraggeber: AWG Rems-Murr-Kreis mbH

Deponie Hamberg

Sanierung Entgasungssystem. Neue Schwachgasfackelanlage

Leistung 100 m³/h, Methangehalt ab 15 Vol.-% Inbetriebnahme: 2013, BK ca. € 360.000.--Auftraggeber: HDG Hamberg Deponiegesellschaft

Deponie Fludersbach

Belüftungsanlage zur Aerobisierung und Absenkung der Schwefelwasserstoffkonzentration im Deponiegas

Inbetriebnahme: 2012, BK € 48.000.--Auftraggeber: Abfallwirtschaft LRA Siegen

Deponie Böblingen

Trocknungsanlage für Holzhackschnitzel

Wärmeauskopplung aus Deponiegaskraftwerk Leitung 400 kW, Trocknungsleistung ca. 6,0 Mg/d Inbetriebnahme: 2012, BK € 300.000.--Auftraggeber: Abfallwirtschaft LRA Böblingen

Deponie Burghof

Erweiterung und Optimierung der Betriebsentgasung

Erweiterung der Entgasungsanlage Neue Gasbrunnen neue Gasregelstationen . Inbetriebnahme: 2011/2012, BK ca. € 500.000.--Auftraggeber: AVL, Ludwigsburg,

DEPONIEENTGASUNG/GASVERWERTUNG - GUTACHTEN/KONZEPTE

Deponie Winterbach

Studie zur Gaserfassung und Gasverwertung 2017 Verbesserung der Gaserfassung Konzept zur neuen Gasverwertung Auftraggeber: Kreis Siegen Wittgenstein

Deponie Bruchsal

Studie zur Gaserfassung und Gasverwertung 2016 Verbesserung der Gaserfassung Konzept zur neuen Gasverwertung Auftraggeber: Landratsamt Karlsruhe

Deponie Winterbach

Studie zur Gaserfassung und Gasverwertung 2015 Verbesserung der Gaserfassung Konzept zur neuen Gasverwertung Auftraggeber: Kreis Siegen Wittgenstein

Deponie Gröbern und Pirna-Kleincotta

Studie zur Gaserfassung und Gasverwertung 2010 Verbesserung der Gaserfassung Konzept zur neuen Gasverwertung Auftraggeber: Zweckverband Abfallwirtschaft Oberes Elbtal (ZAOE)

Deponie Reinstetten

Studie zur Gaserfassung und Gasverwertung 2009 Verbesserung der Gaserfassung Konzept für Schwachgasbehandlung/Verwertung Auftraggeber: Abfallwirtschaftsbetrieb des Landratsamts Biberach

Deponie Burghof

Studie zur neuen Gasverwertung ab 2010 Mit Konzepten der Schwachgasnutzung. Auftraggeber: AVL, Landkreis Ludwigsburg

Deponie Am Lemberg

Prognose des Gaspotentials ab 2007 - 2012 Erweiterung der Entgasungsanlage Neue Konzepte der Schwachgasnutzung. Erdgasbeimischung, Pflanzenöl oder Weitere. Auftraggeber: AVL, Landkreis Ludwigsburg

Deponie Burghof

Prognose des zukünftigen Gaspotentials ab 2006 Berücksichtigung der bereits endverfüllten Bereiche Empfehlung zur Auslegung der Gasnutzung Auftraggeber: AVL, Landkreis Ludwigsburg

Deponie Eichholz

Studie zur Gasreinigung des Deponiegases 2004 Entfernung H₂S aus dem Deponiegas, Auftraggeber: AWG, Rems-Murr-Kreis

DEPONIEENTGASUNG - WIRKUNGSKONTROLLE DER ENTGASUNG (FREMDKONTROLLE NACH DEP.-VERORDNUNG)

Deponie Marchenbach

LAS Messung nach Deponie Verordnung seit 2021 Landratsamt Freising Abfallwirtschaft

Deponie Hintere Dollert

LAS Messung nach Deponie Verordnung seit 2021 Abfallwirtschaftsbetrieb Landkreis Rastatt

Deponie Grötzingen

LAS Messung nach Deponie Verordnung seit 2021 Landratsamt Karlsruhe

Deponie Leppe

LAS Messung nach Deponie Verordnung seit 2018 Auftraggeber: Bergischer Abfallwirtschaftsverband

Deponie Bruchsal

LAS Messung nach Deponie Verordnung seit 2015 Landratsamt Karlsruhe

Deponie Fludersbach

LAS Messung nach Deponie Verordnung 2015 bis 2018 Kreis Siegen Wittgenstein

Deponie Winterbach

LAS Messung nach Deponie Verordnung 2015 bis 2018 Kreis Siegen Wittgenstein

Deponie Ittersbach

FID Messung nach Deponie Verordnung 2013 bis 2017, ab 2021 Landratsamt Karlsruhe

Deponie Hamberg

LAS Messung nach Deponie Verordnung seit 2012 HDG Hamberg Deponiegesellschaft mbH

Deponie Eichelbuck

LAS Messung nach Deponie Verordnung seit 2008 Abfallwirtschaft und Stadtreinigung Freiburg GmbH

Deponie Einöd

Wirkungskontrolle der Entgasung nach TASi, 2001 bis 2016 Auftraggeber: Stadt Stuttgart

Deponie Erbachtal

Wirkungskontrolle der Entgasung nach TASi, 2008 bis 2009 Auftraggeber: Stadt Stuttgart

Deponie Eichholz

Wirkungskontrolle der Entgasung nach Deponie Verordnung, seit 2001 Betreuung und Optimierung der Entgasung Auftraggeber: AWRM (vormals AW) Rems-Murr-Kreis

Deponie Backnang-Steinbach

Wirkungskontrolle der Entgasung nach Deponie Verordnung, seit 2001

Betreuung und Optimierung der Entgasung

Auftraggeber: AWRM (vormals AW) Rems-Murr-Kreis

Deponie Lichte

Wirkungskontrolle der Entgasung nach Deponie Verordnung, seit 2001

Betreuung und Optimierung der Entgasung

Auftraggeber: AWRM (vormals AW) Rems-Murr-Kreis

Deponie Schorndorf

Wirkungskontrolle der Entgasung nach Deponie Verordnung, seit 2001

Betreuung und Optimierung der Entgasung

Auftraggeber: AWRM (vormals AW) Rems-Murr-Kreis

Deponie Tuningen

Wirkungskontrolle der Entagsung nach TASi, 2001 bis 2007

Auftraggeber: Schwarzwald-Baar-Kreis

Deponie Hüfingen

Wirkungskontrolle der Entgasung nach TASi, 2001 bis 2007

Auftraggeber: Schwarzwald-Baar-Kreis

Deponie Talheim

Wirkungskontrolle der Entgasung nach TASi, 2001, 2002

Auftraggeber: Landkreis Tuttlingen, Kreisplanungs- und Bauamt

Deponie Mössingen

Wirkungskontrolle der Entgasung nach Deponie Verordnung, seit 2001

Auftraggeber: Stadt Mössingen

Deponie Am Lemberg

Wirkungskontrolle der Entgasung nach Deponie Verordnung, seit 2001

Auftraggeber: AVL, Landkreis Ludwigsburg

Deponie Burghof

Wirkungskontrolle der Entgasung nach Deponie Verordnung, seit 2001

Auftraggeber: AVL, Landkreis Ludwigsburg

Deponie Schöneiche

Wirkungskontrolle der Entgasung nach TASi, 2003

Gefährdungsgutachten

Auftraggeber: MEAB, Neu Fahrland, als Subunternehmer der Fichtner GmbH & Co.

Deponie Schinderteich

Wirkungskontrolle der Entgasung nach Deponie Verordnung bis 2014

Auftraggeber: ZAV, Landkreis Reutlingen Tübingen

Deponie Katzenbühl

Wirkungskontrolle der Entgasung nach Deponie Verordnung, 2004 bis 2016

Auftraggeber: AWB Esslingen

Anlage 2: Stellungnahme der Genehmigungsbehörde zum geplanten Vorhaben

Staatliches Gewerbeaufsichtsamt Oldenburg

Behörde für Arbeits-, Umwelt- und Verbraucherschutz

Staatl, Gewerbeaufsichtsamt Oldenburg Theodor-Tantzen-Platz 8 • 26122 Oldenburg

Abfallwirtschaftsbetrieb Landkreis Emsland Ordeniederung 1 49716Meppen

27. Juli 202

Bearbeiter/in

Herr Mannai

poststelle@gaa-ol.niedersachsen.de

0441 799-2414

22.07.2021

Ihr Zeichen, Ihre Nachricht vom - ohne -

Mein Zeichen (Bei Antwort angeben) OL 000002934-18 Mi

Umstellung der Deponiegasentsorgung von einem Blockheizkraftwerk auf eine Schwachgasfackel und Ertüchtigung des Deponiegasfassungssystems im Rahmen der Förderung nach NKI

Deponie Venneberg

Ihre E-Mail vom 19.07.2021

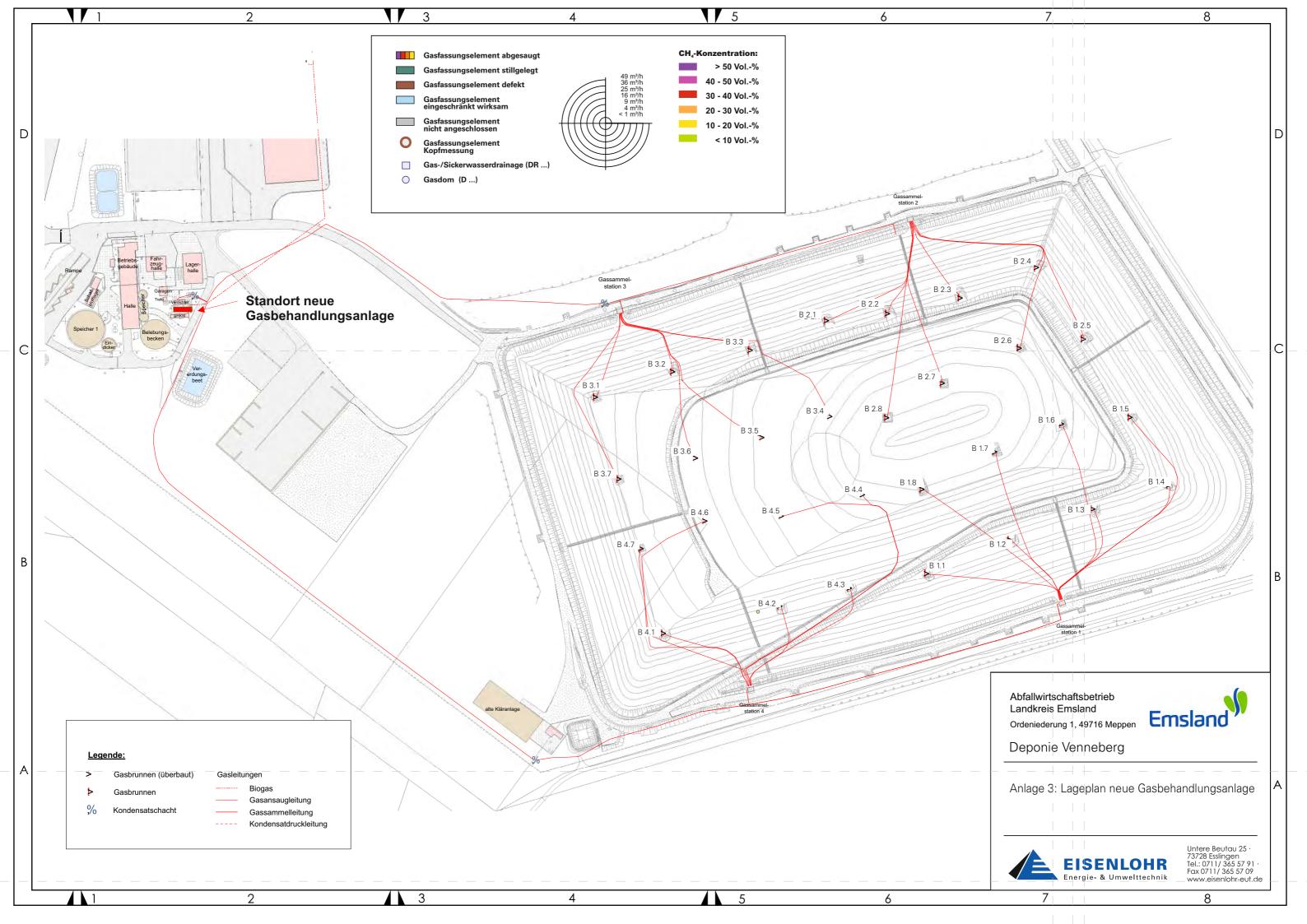
Sehr geehrter Herr Litz,

auf Grundlage Ihrer E-Mail vom 19.07.2021 bestehen seitens des staatlichen Gewerbeaufsichtsamtes (GAA) Oldenburg aufgrund der zurückgehenden Gasmengen und Methankonzentrationen gegen einen Systemwechsel der Deponiegasanlage und der Umrüstung der Gassammelstation keine grundsätzlichen Bedenken.

Die Anlagen und Änderungen sind dem GAA Oldenburg gem. Bundesimmissionsschutzgesetz anzuzeigen oder bzw. zu genehmigen. Der Umfang der Antragsunterlagen ist mit dem GAA Oldenburg abzustimmen.

Mit freundlichen Grüßen

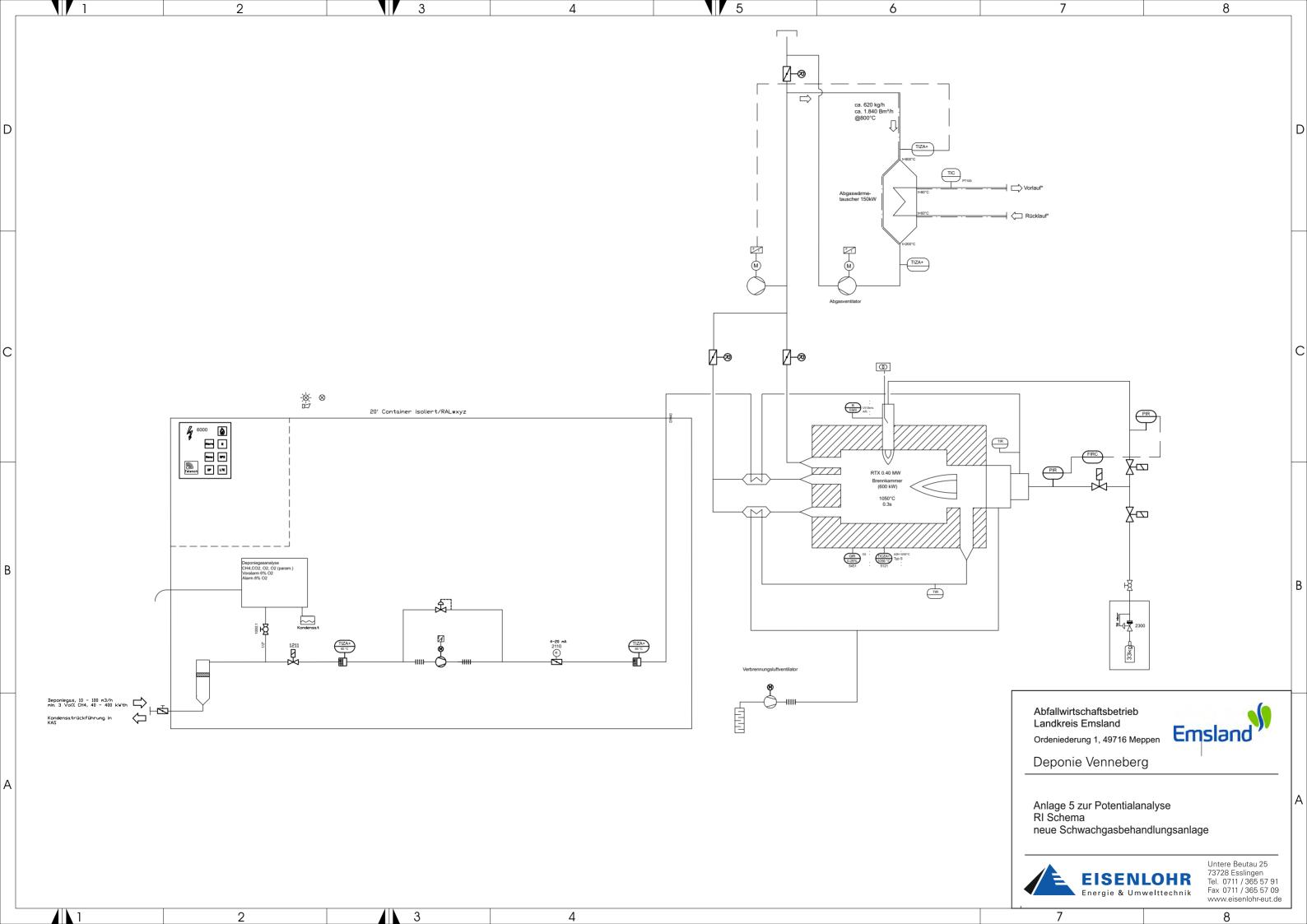
Im Auftrage


S. Mannai

Mannai

DE75 2505 0000 0106 0252 73 NOLADE2H

Anlage 3: Lageplan neue Gasbehandlungsanlage


Anlage 4: Tabelle der abgelagerten Abfälle

Abfallwirtschaftsbetrieb Emsland Müllaufkommen Deponie Venneberg hausmüllähnliche Abfälle

Jahr	Hausmüll	Sperrmüll	Gewerbe- abfälle	Bauabfälle	Gesamt
	Mg	Mg	Mg	Mg	Mg
1976	12.650	4.543	34.558	5.750	57.500
1977	12.650	4.543	34.558	5.750	57.500
1978	12.650	4.543	34.558	5.750	57.500
1979	12.650	4.543	34.558	5.750	57.500
1980	16.509	5.928	45.099	7.504	75.040
1981	17.703	6.357	48.362	8.047	80.470
1982	17.954	6.447	49.048	8.161	81.610
1983	17.859	6.413	48.786	8.118	81.175
1984	18.548	6.660	50.670	8.431	84.310
1985	20.024	7.191	54.703	9.102	91.020
1986	19.081	6.852	52.125	8.673	86.730
1987	21.057	7.561	57.525	9.572	95.715
1988	22.087	7.931	60.337	10.040	100.395
1989	26.046	9.353	71.152	11.839	118.390
1990	23.594	8.472	64.454	10.725	107.245
1991	26.266	9.432	71.753	11.939	119.390
1992	28.020	10.062	76.546	12.737	127.365
1993	20.900	7.505	57.095	9.500	95.000
1994	13.640	4.898	37.262	6.200	62.000
1995	14.876	5.342	40.640	6.762	67.620
1996	13.229	4.750	36.138	6.013	60.130
1997	12.973	4.659	35.441	5.897	58.970
1998	16.595	5.959	45.334	7.543	75.431
1999	16.825	6.042	45.963	7.648	76.477
2000	16.033	5.757	43.798	7.288	72.875
2001	14.841	5.329	40.543	6.746	67.460
2002	13.743	4.935	37.544	6.247	62.469
2003	12.846	4.613	35.093	5.839	58.391
2004	10.615	3.812	28.997	4.825	48.248
2005				38.106	38.106
2006				21.910	21.910
2007				4.451	4.451
2008				27.993	27.993
2009				15.009	15.009
Summe:	502.464	180.430	1.372.640	335.861	2.391.395
in %:	21%	8%	57%	14%	100%

Anlage 5: R&I (P&ID) Schema der neuen Schwachgasbehandlungsanlage

Anlage 6: Richtpreisangebot der Fa. Göbel GmbH

<u>Göbel Energie- und Umwelttechnik Anlagenbau GmbH</u> <u>Fehmarnstraße 22, 24782 Büdelsdorf</u>

Landkreis Emsland Ordenierung 1 7 49716 Meppen

04331-20100-0 Telefon: 04331-20100-29 Telefax: eMail: info@goebel-technik.de www.goebel-technik.de Internet:

Ihr Zeichen:

Unser Zeichen / Datum: ra / 17.06.2021 Herr Axel Ramthun Ansprechpartner: Durchwahl: 04331-20100-27

eMail: ramthun@goebel-technik.de

Budgetermittlung – Deponie Venneberg

Angebot über die Planung, Herstellung, Aufstellung und Inbetriebnahme einer Gasförder- und Gasverbrennungsanlage

Sehr geehrte Damen, sehr geehrte Herren,

wir bedanken uns für die Anfrage zu dem o.g. Bauvorhaben. Mit diesem Schreiben erhalten Sie unsere Kostenabschätzung für eine Anlage zur Förderung, Verbrennung und Verwertung von Deponieschwachgas auf der Deponie Venneberg.

Angebotsgrundlage/ Angebotsinhalt/Anlagenkonzeption

Anlagentyp	Göbel GVS 100 RTX 0.40 MW WAK0.15
i iiiagontjp	Sobel S (S 100 R111 00 10 1/1) () () ()

 $10 - 100 \,\mathrm{m_n}^3/\mathrm{h}$ Rohgas Volumenstrom CH₄-Konzentration > 3% bis 100%

< 8% O₂-Konzentration

min. 5°C, max. 35°C Gaseintrittstemperatur Gasfeuchte Eintritt 100 % (relative Feuchte)

Gasförderanlage Gasförderaggregat Drehkolbengebläse

> Druckdifferenz 250 mbar Gasdruck Eintritt 0 bis -150 mbar

Hydraulischer Regelbereich 1:10

Deponiegasanalyse CH_4 (IR, 0% - 100%) CO_2 (IR, 0% - 100%)

(PM., 0% - 25%) O_2 (PM., 0% - 25%) O_2

400 kW Verbrennungsanlage Thermische Leistung

> Thermischer Regelbereich 1:10 > 1.000°C Brennkammersolltemperatur Verweilzeit > 0.3 Sekunden

Rekuperation für Schwachgasbetrieb zuschaltbare Rohrbündel-Wärmetauscher

diskontinuierlich durch Bypassbetrieb Wärmenutzung Betriebsart

> $0\;kW-150\;kW$ thermische Leistung

80°C Vorlauftemperatur Heizwasser

Stahlcontainer mit nebenstehender Verbrennungs- und Nutzungsanlage Anlagenkonzept

Hauptkomponenten 22-Fuß Stahlcontainer mit separatem Schaltanlagenraum

Drehkolbengebläse

RTX-Verbrennungsanlage mit zuschaltbaren Wärmetauschern für Luft und Gas

Verbrennungsluftventilator

Startgasanlage

Abgaswärmetauscher für Heizwassererzeugung

Abgasventilator

Plattenwärmetauscher als Übergabewärmetauscher ($90/85^{\circ}C - 80/60^{\circ}C$)

Sicherheitstechnik gemäß sicherheitstechnischem Konzept für RTX-Anlagen

Verrohrungen für Gas, Abgas, Heizwasser

Schaltanlage inkl. Steuerung, Visualiserung, Datenarchivierung und Fernzugriff

Gesamtpreis

339.210,00 Euro

Die Kostenschätzung umfasst die folgenden Leistungen:

Herstellung der Gasförderanlage inkl. Steuerung

Gasverbrennungsanlage Wärmenutzungsanlage

Anlieferung der Gesamtanlage auf den Standort

Fundamenterstellung einschließlich Erdungssystem

Anlageninstallation inkl. gastechnischem Anschluss

elektrotechnischem Anschluss Anschluss an das Erdungssystem

Bereitstellung der Schnittstelle zum Heizungssystem Einrichtung des Fernzugriffs auf die Anlagentechnik Sicherheitstechnische Abnahme gemäß BetrSichV

Anlageninbetriebnahme/ Schulung des Betreiberpersonals

Anlagenbetreuung

Für die Durchführung von Wartungsarbeiten und die Störungsbeseitigung steht uns ein Deutschland enges Netz aus Servicetechnikern und Anlagenbetreibern zur Verfügung.

Referenzen

In Anlage zum Angebot finden Sie einen Auszug unserer gastechnischen Referenzen für die Bereiche Herstellung, Vermietung, Betrieb und Wartung gastechnischer Anlagen.

Kaufmännische Bedingungen

Preisstellung

Die Ermittlung der v. g. Preise erfolgte ohne Berücksichtigung der Umsatzsteuer.

Zahlungsbedingungen Lieferung Anlagentechnik

gemäß VOB(B)

30% bei Vertragsabschluss 60% bei Anlieferung 10% nach Anlagenabnahme

Amtsgericht Kiel, HRB 17287 KI St-Nr.: 28 284 06607

USt-IdNr.: DE815603415

IBAN DE59214500000000011031 BIC NOLADE21RDB

Sparkasse Mittelholstein AG

Für Rückfragen steht Ihnen Herr Axel Ramthun unter der o.g. Rufnummer gern zur Verfügung.

Büdelsdorf, 17.06.2021

Axel Ramthun

Anlagen

Amtsgericht Kiel, HRB 17287 KI

St-Nr.: 28 284 06607

USt-IdNr.: DE815603415

Anlage 7: Ingenieurangebot der Eisenlohr Energie & Umwelttechnik GmbH

Elseniohr Energie & Umwelttechnik GmbH

Untere Beutau 25, 73728 Esslingen

Abfallwirtschaftsbetrieb Landkreis Emsland zu Hd. Herrn Krämer Ordeniederung 1

49716 Meppen

Ihre Zeichen/Ihre Nachricht Unsere Auftrags-Nr./Zeichen Telefon

AWB-Ems 21-1 ei

Telefax (0711) 3 65 57 91 (0711) 3 65 57 09

Esslingen, den 10. Juni 2021

DEPONIE VENNEBERG, RICHTPREISANGEBOT:

INBETRIEBNAHME DER NEUEN SCHWACHGASANLAGE EINSCHLIEßLICH EINFAHREN. UBERWACHEN UND BERICHTSWESEN.

Sehr geehrter Herr Krämer,

bezugnehmend auf das Förderprojekt der NKI: In Situ Stabilisierung Deponie Venneberg erhalten Sie im Folgenden unseren Honorarvorschlag für die Einstellung, Online-Überwachung der neuen Entgasungsanlage auf der Deponie Venneberg sowie den nach NKI erforderlichen Berichten für die PTJ.

Wir werden die Deponie schrittweise in den Schwachgasbetrieb führen, dabei ist uns insbesondere wichtig die Entgasungsanlage in der Einfahrphase wöchentlich einzustellen und zu überwachen. Die neue Anlage wird über eine Online-Schnittstelle verfügen, dadurch kann auch via Fernwartung die Entwicklung der Gasqualität überwacht und beeinflusst werden.

Nach unseren Erfahrungen ist es nicht sinnvoll die Gasmenge zu schnell zu steigern. Einen optimalen Austrag an Kohlenwasserstoffen ist nur im gering teilaeroben Betrieb möglich.

Hierzu werden wir die Gasmengen an den einzelnen Gasbrunnen zunächst nur bis zu einem CH₄/CO₂ Verhältnis von 1/1 steigern.

Folgende Leistungen sind bis zum Ende der Förderung notwendig:

Pos. 1 Ingenieurtechnische Ausführung der Einstellung des Schwachgasbetriebs 1-2 wöchentliche Kontrolle und Einstellung der Entgasungsanlage bis zu einem stabilen Betriebszustandes (bis längstens 3 Monate). einschließlich 1 x LAS Messungen.

Aufwand ca. 10 Messungen vor Ort

€ 10,000,--

Pos. 2 Betriebsführung, tägliche Online-Anlagensteuerung und Online-Überwachung der Anlage während des Absaugversuches, Aufwand ca. 12 h im Monat, einschließlich Bereitstellung der Datenverbindung bis längstens 6 Monate € 7.000.--

Pos. 3 Erstellung eines Zwischenberichts und eines Abschlussberichts nach NKI Einschließlich Nachweis der Emissionsziele € 3.000,--

Summe (netto)	€	20.000,
zzgl. 19 % MwSt.	€	3.800,
Gesamtsumme (brutto)	€	23.800,

Ich hoffe unser Vorschlag entspricht Ihren Vorstellungen; für etwaige Rückfragen stehen wir selbstverständlich jederzeit gerne zur Verfügung.

Mit freundlichen Grüßen

Martin EisenJohr

Anlage 8: Messprotokolle Blatt Nr. 1-10

Zentrale Gassammelstelle

Messprotokoll Blatt-Nr.1

	Datum: Wetter:		14.10.2020 bewölkt		26.11.2020 bewölkt	
	Lufttemperati	ır:	10 °		4°	
	Luftdruck:	411	41)25		125
	Protokoll		41			
	Protokoli			ähr		ähr
				2. Messung **)	1. Messung *)	
		(Vol%)				56,2
	Kohlendioxid CO ₂	(Vol%)				24,9
	Sauerstoff O ₂	(Vol%)				0,2
	H2S	ppm				
HGS	Druck p	(mbar)				
1100	Durchfluß Q	(Nm^3/h)				
		,				
	Klappe	(°)				
	Temperatur	(°C)				
Analyse	Methan CH₄	(Vol%)			47,7	52,7
	Kohlendioxid CO2	(Vol%)	28,5/29,4		21,9	22,2
	Sauerstoff O ₂	(Vol%)	0,2/0,2		0,1	0,2
	H2S	ppm				
Durchfluß	Q	(m^3/h)			120	120
_ 0.0	P th	(KW)				1 = 3
Durchfluß	Q alt	(m^3/h)	200			
Fackel	Q neu	(m ³ /h)	200		100.0	1000
Durchfluß	Q Messung	(Nm^3/h)			122,8	122,8
Gesamt	Q Anzeige	(m ³ /h)	200		120,0	120,0
	Methan CH₄	(Vol%)				
	Kohlendioxid CO ₂	(Vol%)				
	Sauerstoff O ₂	(Vol%)				
	H2S	ppm				
	Durchfluß Q	(m^3/h)				
		(°)				
	Klappe Methan CH ₄	(Vol%)				
		(Vol%)				
	Sauerstoff O_2	(Vol%)				
	H2S	ppm				
	Durchfluß Q	(Nm ³ /h)				
	Klappe	(°)				
	Methan CH₄	(Vol%)				
		(Vol%)				
	Sauerstoff O ₂	(Vol%)				
	H2S	ppm				
	Durchfluß Q					
		(Nm³/h)	 			
	Klappe	(°)				
	Methan CH ₄	(Vol%)				
		(Vol%)				
	Sauerstoff O_2	(Vol%)				
	H2S	ppm				
	Durchfluß Q	(Nm ³ /h)				
	Klappe	(°)				
	Methan CH ₄	(Vol%)				
		(Vol%)				
	Sauerstoff O ₂	(Vol%)				
		<u> </u>	1			
	H2S	ppm				
	Durchfluß Q	(Nm ³ /h)				<u> </u>
	Klappe	(°)				
Durchmesser DN 50/	150 mm	<u></u>				

Durchmesser DN 50/150 mm

*) 1. Messung vor Einregulierung

**) 2. Messung nach Einregulierung

Zentrale Gassammelstelle

Messprotokoll Blatt-Nr.2

					05.05.005		
	Datum: Wetter:		23.02.2021 sonnig		25.05.2021 regnerisch		
	Lufttemperatu	ır:	JI	1 °	_	3 °	
	Luftdruck:	411	41)16		013	
	Protokoll		41				
	Protokoli		!	ähr		sähr	
		1		2. Messung **)	1. Messung *)	2. Messung **	
		(Vol%)					
	Kohlendioxid CO ₂	(Vol%)					
	Sauerstoff O ₂	(Vol%)					
	H2S	ppm					
HGS	Druck p	(mbar)					
1100	Durchfluß Q	(Nm^3/h)					
	Klappe	(°)					
	Temperatur	(°C)					
Analyse	Methan CH₄	(Vol%)		41,0	53,3	48,4	
	Kohlendioxid CO2	(Vol%)	21,7	20,3	23,7	22,0	
	Sauerstoff O ₂	(Vol%)	0,0	0,2	0,0	0,1	
	H2S	ppm					
Durchfluß	Q	(m^3/h)				ĺ	
	P th	(KW)				1	
Durchfluß	Q alt					1	
		(m^3/h)	000	000	000	000	
Fackel	Q neu	(m ³ /h)	200	200	202	202	
Durchfluß	Q Messung	(Nm^3/h)		178,3	210,3	210,3	
Gesamt	Q Anzeige	(m^3/h)	200	200	202	202	
	Methan CH₄	(Vol%)					
	Kohlendioxid CO ₂	(Vol%)					
	Sauerstoff O ₂	(Vol%)					
	H2S	ppm					
	Durchfluß Q	(m^3/h)					
		(°)					
	Klappe Methan CH ₄	· /					
		(Vol%)					
		(Vol%)					
	Sauerstoff O_2	(Vol%)					
	H2S	ppm					
	Durchfluß Q	(Nm ³ /h)					
	Klappe	(°)					
	Methan CH₄	(Vol%)					
		(Vol%)				1	
	Sauerstoff O ₂	(Vol%)					
	H2S	<u> </u>				1	
		ppm		<u> </u>		-	
	Durchfluß Q	(Nm ³ /h)				-	
	Klappe	(°)				<u> </u>	
	Methan CH₄	(Vol%)					
	Kohlendioxid CO ₂	(Vol%)					
	Sauerstoff O ₂	(Vol%)					
	H2S	ppm					
	Durchfluß Q	(Nm ³ /h)					
	Klappe	(°)				1	
	Methan CH ₄	(Vol%)					
						-	
		(Vol%)					
	Sauerstoff O ₂	(Vol%)					
	H2S	ppm				<u> </u>	
l .							
	Durchfluß Q	(Nm ³ /h)					
	Durchfluß Q Klappe	(Nm³/h) (°)					

*) 1. Messung vor Einregulierung

**) 2. Messung nach Einregulierung

Dezentrale Gassammelstelle GS 1

Messprotokoll Blatt-Nr. 3

Dezenirale Gassammeisielle G5 1 IVIESSPROTOKOII BIQTI-1							
	D t	1	14100000	04 11 0000	02.00.0001	23.02.2021	
	Datum Mothan CH	()/al ()/	14.10.2020	26.11.2020	23.02.2021	Brunnenköpfe 4 2	
	Methan CH ₄	(Vol%)		23,7	5,1	4,3	
1 1	Kohlendioxid CO ₂	` '	-	21,3	18,2	15,5	
1.1	Sauerstoff O ₂	(Vol%)		0,4	1,0	3,2	
1.1	Durchfluß Q	(Nm ³ /h)		0,0	1,4>0	00	
	Klappe Mathan CU	(°)	45	45>0	45>0	90	
	Methan CH ₄	(Vol%)		49,7	16,4	17,1	
7.0	Kohlendioxid CO ₂	(Vol%)		23,3	21,3	21,5	
۱.8	Sauerstoff O ₂	(Vol%)		0,0	0,0	0,0	
1.8	Durchfluß Q	(Nm ³ /h)		6>5	5,7>2	20	
	Klappe Mathema Cli	(°)	45	45>36	36>30	90	
	Methan CH ₄	(Vol%)		31,6	7,7	6,9	
		(Vol%)		24,1	19,2	18,3	
1.2	Sauerstoff O ₂	(Vol%)	-	0,0	0,0	0,4	
	Durchfluß Q	(Nm ³ /h)		2>1	1>0		
	Klappe	(°)	45	45>24	24>0	90	
	Methan CH ₄	(Vol%)		63,7	44,8	44,3	
		(Vol%)		21,5	22,4	22,7	
1.7	Sauerstoff O ₂	(Vol%)		0,0	0,0	0,0	
	Durchfluß Q	(Nm ³ /h)		2,5<3,5	5,3<7,3		
	Klappe	(°)	45	45<50	50<65	90	
	Methan CH ₄	(Vol%)		61,2	58,4	57,5	
		(Vol%)		21,2	21,7	21,9	
1.6	Sauerstoff O ₂	(Vol%)		0,0	0,0	0,0	
	Durchfluß Q	(Nm ³ /h)		5,3	7,5<12		
	Klappe	(°)	45	45	45<60	90	
	Methan CH ₄	(Vol%)		55,7	34,0	33,9	
	Kohlendioxid CO ₂	(Vol%)		24,3	25,5	25,9	
1.3	Sauerstoff O ₂	(Vol%)		0,6	0,0	0,0	
	Durchfluß Q	(Nm ³ /h)		4,6	7,2>6,2		
	Klappe	(°)	45	45	45>40	90	
	Methan CH ₄	(Vol%)		41,7	27,8	25,9	
	Kohlendioxid CO ₂	(Vol%)		24,9	22,8	21,7	
1.4	Sauerstoff O ₂	(Vol%)	0,0	0,0	0,9	0,8	
	Durchfluß Q	(Nm ³ /h)		3>2	1,6>1		
	Klappe	(°)	45	45>24	24>20	90	
	Methan CH ₄	(Vol%)	,	64,3	48,0	47,1	
		(Vol%)		29,3	26,0	27,0	
1.5	Sauerstoff O ₂	(Vol%)		0,0	0,0	0,0	
	Durchfluß Q	(Nm ³ /h)		3<3,5	4>5,5		
	Klappe	(°)	45	45<50	50>55	90	
	Methan CH ₄	(Vol%)					
		(Vol%)					
	Sauerstoff O ₂	(Vol%)					
	Durchfluß Q	(Nm ³ /h)					
	Klappe	(°)					
	Methan CH ₄	(Vol%)					
		(Vol%)					
	Sauerstoff O ₂	(Vol%)					
	Durchfluß Q	(Nm ³ /h)					
	Klappe	(°)					
	Methan CH ₄	(Vol%)	55,2	50,5/56,9	37,9/43,9		
	Kohlendioxid CO ₂	(Vol%)	25,8	24,2/24,1	22,4/23,1		
Abgang	Sauerstoff O ₂	(Vol%)		0,0/0,1	0,0/0,0		
, was 19	Durchfluß Q	(Nm ³ /h)		24,9	34,0	 	
		· ·				<u> </u>	
	Druck	(mbar)	-3,0	-4,0	-3,0		
	Klappe	(°)	90	90	90	<u> </u>	

	Dezentrale Gassammelstelle GS 1	Messprotokoll Blatt-Nr. 4
ı		05 05 0001

		<u> </u>		25.05.2021		
	Datum		25.05.2021	Brunnenköpfe		
	Methan CH ₄	(Vol%)		4,2		
		(Vol%)		17,0		
11	Sauerstoff O ₂	(Vol%)		2,3		
1.1	Durchfluß Q	(Nm^3/h)		2,0		
	Klappe	(°)	45>0	90		
	Methan CH ₄	(Vol%)		25,1		
	Kohlendioxid CO ₂			20,8		
1 0	Sauerstoff O ₂	(Vol%)		0,0		
1.8	Durchfluß Q	(VOI 76) (Nm ³ /h)	-	0,0		
		(°)	30	90		
	Klappe Methan CH ₄	(Vol%)		7,1		
		(Vol%)		14,0		
1.0	Sauerstoff O ₂	(VOI%)				
1.2		, ,		1,0		
	Durchfluß Q	(Nm ³ /h)		00		
	Klappe	(°)	20>0	90		
	Methan CH ₄	(Vol%)		45,3		
	Kohlendioxid CO ₂	, ,		22,8		
1.7	Sauerstoff O ₂	(Vol%)		0,0		
	Durchfluß Q	(Nm ³ /h)				
	Klappe	(°)	65	90		
	Methan CH ₄	(Vol%)		54,4		
		(Vol%)		22,1		
1.6	Sauerstoff O ₂	(Vol%)		0,0		
	Durchfluß Q	(Nm ³ /h)				
	Klappe	(°)	60	90		
	Methan CH₄	(Vol%)		36,7		
		(Vol%)		24,8		
1.3	Sauerstoff O_2	(Vol%)		0,0		
	Durchfluß Q	(Nm ³ /h)	7,7			
	Klappe	(°)	40	90		
	Methan CH₄	(Vol%)	32,8	31,7		
	Kohlendioxid CO ₂	(Vol%)	22,8	22,4		
1.4	Sauerstoff O_2	(Vol%)	0,0	0,0		
	Durchfluß Q	(Nm ³ /h)	1,7			
	Klappe	(°)	20	90		
	Methan CH₄	(Vol%)	48,3	47,1		
	Kohlendioxid CO ₂	(Vol%)	26,6	26,2		
1.5	Sauerstoff O ₂	(Vol%)	0,0	0,0		
	Durchfluß Q	(Nm ³ /h)	3,2			
	Klappe	(°)	55	90		
	Methan CH ₄	(Vol%)				
	Kohlendioxid CO ₂	(Vol%)				
	Sauerstoff O ₂	(Vol%)				
	Durchfluß Q	(Nm^3/h)				
	Klappe	(°)				
	Methan CH ₄	(Vol%)				
	Kohlendioxid CO ₂	(Vol%)				
	Sauerstoff O ₂	(Vol%)				
	Durchfluß Q	(Nm^3/h)				
	Klappe	(°)				
	Methan CH₄	(Vol%)	44,2			
	Kohlendioxid CO ₂	,			 	
Abaasa					 	
Abgang	Sauerstoff O ₂	(Vol%)				
	Durchfluß Q	(Nm ³ /h)	37,6			
	Druck	(mbar)	-3,0			
	Klappe	(°)	90			
Durahmanar DN FO		. , ,	11	a 1	·	

Dezentrale Gassammelstelle GS 2

Messprotokoll Blatt-Nr. 5

<u>Dezentrale Gassammelstelle GS 2</u>				Messprotokoll Bla <u>tt-Nr. 5</u>			
	1			1		23.02.2021	
	Datum		14.10.2020	26.11.2020	23.02.2021	Brunnenköpfe	
	·	(Vol%)	47,8	48,8	18,5	18,1	
2.1		(Vol%)	25,4	26,0	18,8	18,7	
	Sauerstoff O ₂	(Vol%)	0,0	0,0	0,0	0,0	
	Durchfluß Q	(Nm ³ /h)	9,4	3>2,5	7,3> 3,9		
	Klappe	(°)	42	42>36	36>25	90	
	Methan CH₄	(Vol%)	52,6	54,7	25,2	24,4	
	Kohlendioxid CO ₂	(Vol%)	20,3	18,9	19,7	19,5	
2.2	Sauerstoff O ₂	(Vol%)	0,0	0,0	0,0	0,0	
	Durchfluß Q	(Nm^3/h)	0,0	4,0	9,9> 7,0		
	Klappe	(°)	0	42	42>35	90	
	Methan CH₄	(Vol%)	61,7	66,1	47,9	48,1	
		(Vol%)	25,7	27,1	24,6	24,7	
2.8	Sauerstoff O ₂	(Vol%)	0,0	0,0	0,0	0,0	
↓	Durchfluß Q	(Nm^3/h)	12	3,5<6,5	22,2<25	<u> </u>	
	Klappe	(°)	45	45<60	60<65	90	
	Methan CH ₄	(Vol%)	66,6	65,1	65,4	65,7	
		(Vol%)	29,5	28,8	27,3	27,7	
2.7	Sauerstoff O ₂	(Vol%)	0,1	0,0	0,0	0,0	
~ 1,7		(Nm ³ /h)	21	10<12	20,5<23,3	5,5	
	Klappe	(°)	45	45<50	50<55	90	
	Methan CH ₄	(Vol%)	51,6	58,4	36,0	35,3	
		(Vol%)	23,9	23,6	21,4	21,4	
2.3	Sauerstoff O ₂	(Vol%)	0,0	0,0	0,0	0,0	
2.0	Durchfluß Q	$(VOI.^{-78})$ (Nm^{3}/h)	11,0	4,8	7,8> 6,6	5,5	
	Klappe	(°)	45	45	45>38	90	
		(Vol%)	50,0	40,1	20,9	19,8	
	Kohlendioxid CO ₂	,	28,2	26,9	24,5	24,2	
2.4		(Vol%)		0,0	0,0	0,0	
4.4	Durchfluß Q	(VOI 76) (Nm^3/h)		3,5>2,5	4,7>3	0,0	
	Klappe	(°)	45	45>24	24>20	90	
	Methan CH₄	(Vol%)	52,6	38,2	2,9/61,3	61,1	
		(VOI%)	27,6	22,2	2,8/23,6	18,4	
2.6	Sauerstoff O ₂	(VOI%)		2,7	18,9/0,0	0,0	
2.0	Durchfluß Q	(Nm^3/h)	1,3	3,6>2,5	20,0	0,0	
		(NM°/n) (°)	45		<u>20,0</u> 45	0<90	
	Klappe Methan CH			45>22			
		(Vol%)		44,8	28,0	28,1	
0.5		(Vol%)	32,5	26,8	24,9	25,6	
2.5		(Vol%)		0,0	0,2	0,0	
	Durchfluß Q	(Nm ³ /h)	8,7	6,5>4,5	7>4,5	00	
	Klappe Methan CH	(°)	45	45>24	24>18	90	
	Methan CH ₄	(Vol%)				<u> </u>	
		(Vol%)					
	Sauerstoff O ₂	(Vol%)				 	
	Durchfluß Q	(Nm ³ /h)				 	
	Klappe	(°)					
	Methan CH ₄	(Vol%)				 	
		(Vol%)				 	
	Sauerstoff O ₂	(Vol%)					
	Durchfluß Q	(Nm ³ /h)					
	Klappe	(°)					
	Methan CH₄	(Vol%)	58,1	47,1/57,4	41,2/44,0		
	Kohlendioxid CO ₂	(Vol%)	26,5	23,9/25,9	23,5/25		
Abgang	Sauerstoff O ₂	(Vol%)		3,0/0,0	0,0/0,0		
, 94119	Druck	(mbar)	-3,0	-5,0	-4,0		
		` '				 	
	Durchfluß Q	(Nm³/h)		39,3	75,3		
	Klappe	(°)	90	90	90		

Dezentrale Gassammelstelle GS 2	Messprotokoll Blatt-Nr. 6
	25.05.2021

Dozomalo Ods	<u>BULLILIEBIEIIE GB</u>			25.05.2021	
	Datum		25.05.2021		
	Datum Mothan CH	(\/c 9/)	25.05.2021	Brunnenköpfe	L
	Methan CH ₄	(Vol%)		30,4	
	_	(Vol%)		19,1	
2.1	Sauerstoff O ₂	(Vol%)		0,0	
	Durchfluß Q	(Nm ³ /h)			
	Klappe	(°)	25	90	
	Methan CH₄	(Vol%)		37,7	
	Kohlendioxid CO ₂	(Vol%)	20,1	20,3	
2.2	Sauerstoff O ₂	(Vol%)	0,0	0,0	
2.2	Durchfluß Q	(Nm ³ /h)	6,9		
	Klappe	(°)	35	90	
	Methan CH₄	(Vol%)		48,5	
	Kohlendioxid CO ₂	(Vol%)	23,8	23,9	
2.8	Sauerstoff O ₂	(Vol%)	0,0	0,0	
2.0	Durchfluß Q	(Nm ³ /h)			
	Klappe	(°)	65	90	
	Methan CH₄	(Vol%)		64,2	
		(Vol%)		25,7	
0.7		` ,		4	
2.7	Sauerstoff O ₂	(Vol%)		0,0	
	Durchfluß Q	(Nm ³ /h)		00	
	Klappe	(°)	55	90	
	Methan CH ₄	(Vol%)	41,2	40,8	
		(Vol%)	20,5	20,7	
2.3	Sauerstoff O_2	(Vol%)		0,0	
	Durchfluß Q	(Nm ³ /h)	5,2		
	Klappe	(°)	38	90	
	Methan CH₄	(Vol%)	43,1	41,1	
	Kohlendioxid CO ₂	(Vol%)	27,6	27,6	
2.4	Sauerstoff O_2	(Vol%)	0,1	0,0	
	Durchfluß Q	(Nm ³ /h)	2,3		
	Klappe	(°)	20	90	
	Methan CH₄	(Vol%)	63,2	63,0	
	Kohlendioxid CO ₂	(Vol%)	23,3	23,6	
2.6	Sauerstoff O ₂	(Vol%)	0,0	0,0	
	Durchfluß Q	(Nm^3/h)	7,2		
	Klappe	(°)	45	90	
	Methan CH ₄	(Vol%)		35,3	
		(Vol%)	25,0	25,0	
2.5	Sauerstoff O ₂	(Vol%)	0,0	0,0	
2.5	Durchfluß Q	,		0,0	
		(Nm³/h) (°)	7,5 18	90	
	Klappe Methan CH₄	(Vol%)	10	90	
		` ,		 	
		(Vol%)		-	
	Sauerstoff O ₂	(Vol%)			
	Durchfluß Q	(Nm ³ /h)			
	Klappe	(°)			
	Methan CH ₄	(Vol%)		<u> </u>	
		(Vol%)			
	Sauerstoff O_2	(Vol%)			
	Durchfluß Q	(Nm ³ /h)			
	Klappe	(°)			
	Methan CH ₄	(Vol%)	50,5		
	•	(Vol%)			
Abaasa	Sauerstoff O ₂	(Vol%)			
Abgang		<u> </u>			
	Druck	(mbar)	-3,0		
	Durchfluß Q	(Nm ³ /h)	85,1		
	Klappe	(°)	90		
Durchmossor DN 50		\ /		11	<u> </u>

Dezentrale Gassammelstelle GS 3

Messprotokoll Bla<u>tt-Nr. 7</u>

				23.02.2021		
	Datum		14.10.2020	26.11.2020	23.02.2021	Brunnenköpfe
	Methan CH₄	(Vol%)		63,1	43,3	überbaut
	Kohlendioxid CO ₂	(Vol%)	20,9	21,4	20,0	
3.4	Sauerstoff O ₂	(Vol%)	0,0	0,0	0,0	
	Durchfluß Q	(Nm ³ /h)	9,2	4,0	5,5<7	
	Klappe	(°)	45	45,0	45<50	
	Methan CH₄	(Vol%)	56,8	52,0	29,6	28,8
	Kohlendioxid CO ₂	(Vol%)	22,7	21,0	18,9	18,4
3.3	Sauerstoff O ₂	(Vol%)	0,0	0,0	0,0	0,0
	Durchfluß Q	(Nm ³ /h)		7,5>5	8,5>6,5	
	Klappe	(°)	45	45>40	40>35	90
	Methan CH₄	(Vol%)		55,2	35,0	überbaut
	Kohlendioxid CO ₂	(Vol%)		17,5	17,0	
3.5	Sauerstoff O ₂	(Vol%)		0,0	0,0	
	Durchfluß Q	(Nm ³ /h)		2	3,7>3,5	
	Klappe	(°)	45	45	45>42	
	Methan CH ₄	(Vol%)		63,4	46,5	überbaut
	Kohlendioxid CO ₂	(Vol%)	28,0	26,4	24,0	
3.6	Sauerstoff O ₂	(Vol%)	0,0	0,0	0,0	
	Durchfluß Q	(Nm ³ /h)		6,6<8	13,5<15	
	Klappe	(°)	45	45<60	60<70	
	Methan CH ₄	(Vol%)		46,8	17,5	17,3
	Kohlendioxid CO ₂	(Vol%)		22,2	20,2	20,0
3.2	Sauerstoff O ₂	(Vol%)	0,0	0,0	0,0	0,0
	Durchfluß Q	(Nm ³ /h)		7>5	5,7>3,3	00
	Klappe	(°)	45	45>30	30>25	90
	Methan CH ₄	(Vol%)	,	38,7	20,0	19,8
2.1		(Vol%)		24,8	21,9	22,0
3.1	Sauerstoff O ₂	(Vol%)		0,0	0,0	0,0
	Durchfluß Q	(Nm ³ /h)	8,0 45	7,5>3,8 45>24	4,6>2,3 24>20	90
	Klappe Methan CH₄	(Vol%)		51,6	25,7	23,1
	Kohlendioxid CO ₂	(Vol%)	27,9	27,0	23,7	21,9
3.7	Sauerstoff O ₂	(Vol%)	0,0	0,0	1,0	1,1
5.7	Durchfluß Q	(Nm ³ /h)		6,5>5,5	3,7>2,9	1,1
	Klappe	(°)	45	45>36	36>30	90
	Methan CH₄	(Vol%)		407 00	007 00	70
	Kohlendioxid CO ₂	(Vol%)				
	Sauerstoff O ₂	(Vol%)				
	Durchfluß Q	(Nm ³ /h)				
	Klappe	(°)				
	Methan CH ₄	(Vol%)				
	Kohlendioxid CO ₂	(Vol%)				
	Sauerstoff O ₂	(Vol%)				
	Durchfluß Q	(Nm^3/h)				
	Klappe	(°)				
	Methan CH₄	(Vol%)				
	Kohlendioxid CO ₂	(Vol%)				
	Sauerstoff O ₂	(Vol%)				
	Durchfluß Q	(Nm ³ /h)				
	Klappe	(°)				
	Methan CH ₄	(Vol%)	57,5	50,6/55,2	34,5/35,1	
	Kohlendioxid CO ₂	(Vol%)	25,8	23,4/23,2	21,4/21,1	
Abgang	Sauerstoff O ₂	(Vol%)	0,0	0,1/0,0	0,0/0,0	
, 9 41 19	Druck	(mbar)		-5,0	-3,0	1
						
	Durchfluß Q	(Nm ³ /h)		33,3	40,5	-
	Klappe	(°)	90	90	90]

Dezentrale Gassammelstelle GS 3

Messprotokoll Blatt-Nr. 8

BOZOTITATO CAO	<u>Barririebielle Go</u>	<u>. </u>		25.05.2021	
	Datum		25.05.2021	Brunnenköpfe	1
	Methan CH ₄	(Vol%)		überbaut	
	Kohlendioxid CO ₂	(Vol%)		ubelbuul	
3.4	Sauerstoff O ₂	(Vol%)	0,0		
3.4	Durchfluß Q	, ,			
		(Nm ³ /h)			
	Klappe Mathem CII	(°)	50	44.0	
	Methan CH ₄	(Vol%)	48,7	44,8	
		(Vol%)	22,5	20,4	
3.3	Sauerstoff O ₂	(Vol%)	0,0	0,0	
	Durchfluß Q	(Nm ³ /h)	8,5		
	Klappe	(°)	90	90	
	Methan CH ₄	(Vol%)	-	überbaut	
	Kohlendioxid CO ₂	(Vol%)	23,8		
3.5	Sauerstoff O ₂	(Vol%)	0,0		
	Durchfluß Q	(Nm ³ /h)			
	Klappe	(°)	42		
	Methan CH₄	(Vol%)	58,3	überbaut	
	Kohlendioxid CO ₂	(Vol%)	26,5		
3.6	Sauerstoff O ₂	(Vol%)	0,0		
	Durchfluß Q	(Nm ³ /h)	16,8		
	Klappe	(°)	70		
	Methan CH₄	(Vol%)	42,1	39,1	
	Kohlendioxid CO ₂	(Vol%)	21,8	20,7	
3.2	Sauerstoff O ₂	(Vol%)	0,0	0,0	
U.	Durchfluß Q	(Nm^3/h)			
	Klappe	(°)	25	90	
	Methan CH₄	(Vol%)		44,1	
	· · · · · · · · · · · · · · · · · · ·	(Vol%)		23,0	
3.1	Sauerstoff O ₂	(Vol%)		0,6	
0.1	Durchfluß Q	(Nm ³ /h)		0,0	
	Klappe	(°)	20	90	
	Methan CH₄	(Vol%)	55,1	53,4	
	Kohlendioxid CO ₂	(Vol%)	25,1	24,3	
3.7	Sauerstoff O ₂	(Vol%)	0,0	0,0	
5.7	Durchfluß Q	$(VOI.^{-76})$	7,0	0,0	
		(°)	30	90	
	Klappe Methan CH ₄	(Vol%)		90	
	Kohlendioxid CO ₂	(Vol%)			
	Sauerstoff O ₂	(Vol%)			
		,			
	Durchfluß Q	(Nm³/h) (°)		-	
	Klappe Mothan CH	()		1	
	Methan CH ₄	(Vol%)		-	
		(Vol%)		-	
	Sauerstoff O ₂	(Vol%)		-	
	Durchfluß Q	(Nm ³ /h)		-	
	Klappe	(°)		<u> </u>	
	Methan CH ₄	(Vol%)		 	
	Kohlendioxid CO ₂	(Vol%)		 	
	Sauerstoff O ₂	(Vol%)		 	
	Durchfluß Q	(Nm ³ /h)		 	
	Klappe	(°)		<u> </u>	
	Methan CH₄	(Vol%)	50,5		
	Kohlendioxid CO ₂	(Vol%)	23,1		
Abgang	Sauerstoff O ₂	(Vol%)			
, 94119	Druck	(mbar)	-	1	
		, ,		-	
	Durchfluß Q	(Nm ³ /h)			
	Klappe	(°)	90		

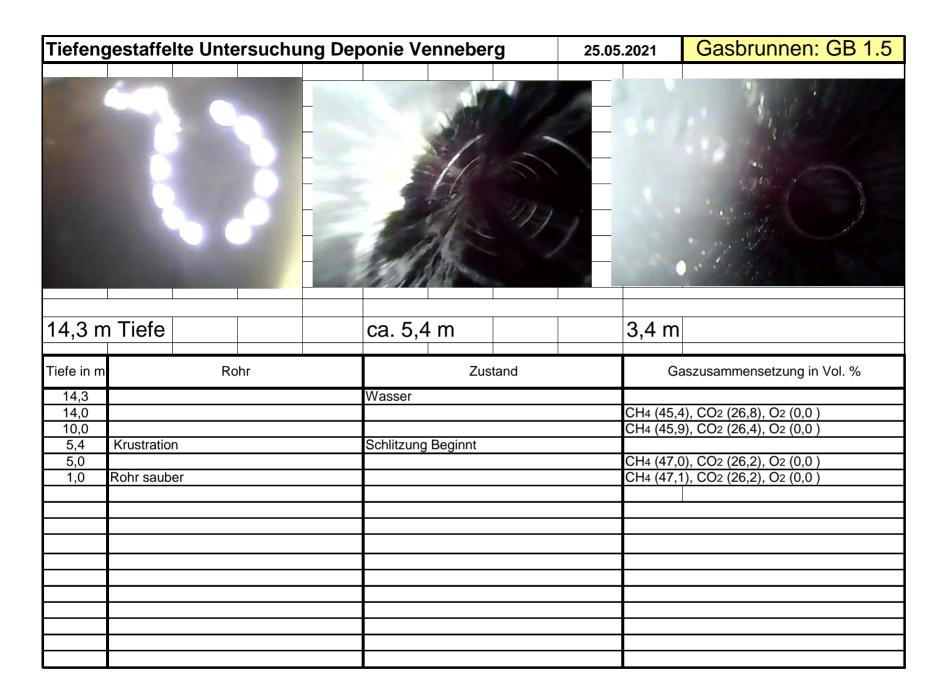
Dezentrale Gassammelstelle GS 4

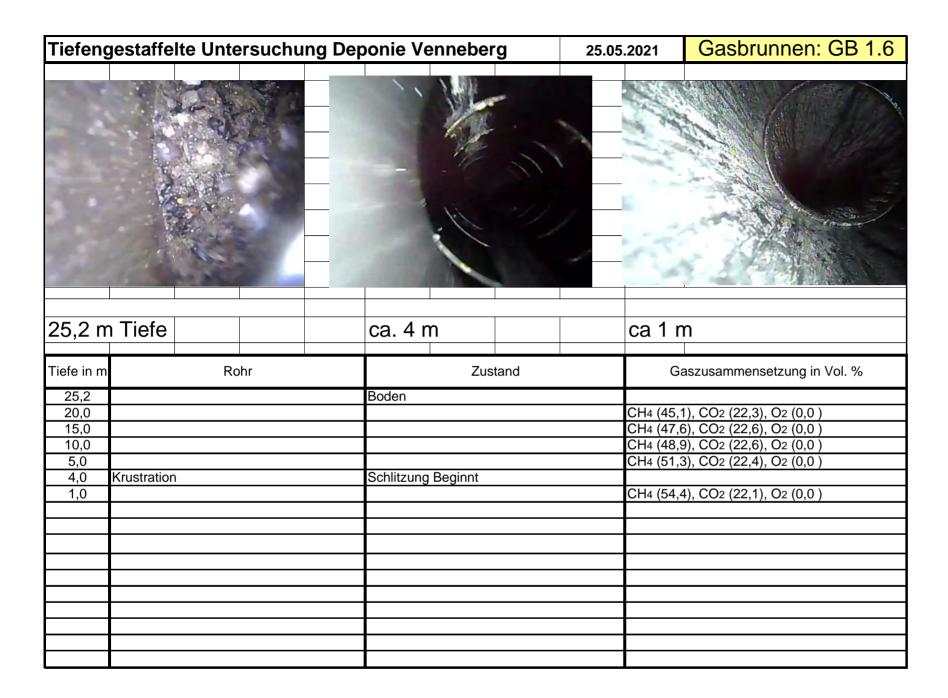
Messprotokoll Bla<u>tt-Nr. 9</u>

Dezerniale Gassarri Heisielle G5 4 IVIESSPIOIOKOII BIQTI							
	Datum	1	14.10.2020	26.11.2020	23.02.2021	23.02.2021 Brunnenköpfe	
	Methan CH₄	(Vol%)		54,5	26,7	25,7	
		(Vol%)		24,2	24,4	23,4	
4.7	Sauerstoff O ₂	(Vol%)	0,0	0,0	0,0	0,0	
4./	Durchfluß Q	(VOI76) (Nm^3/h)		6,6	8,3 > 5,3	0,0	
	Klappe	(°)	42	42	53 > 45	90	
	Methan CH₄	(Vol%)		46,1	30,3	31,4	
	Kohlendioxid CO ₂	,		27,3	24,1	23,9	
4.1	Sauerstoff O ₂	(Vol%)	0,0	0,0	0,0	0,0	
4. '	Durchfluß Q	(VOI76) (Nm^3/h)		6,6>5	7,3	0,0	
	Klappe	(°)	45	45>30	30	90	
	Methan CH ₄	(Vol%)		64,3	50,5	überbaut	
		(Vol%)	31,7	29,8	26,6	decredar	
4.6	Sauerstoff O ₂	(Vol%)	0,0	0,0	0,9	1	
7.0	Durchfluß Q	(Nm ³ /h)		5,6<6,8	6,9 < 8,6	1	
	Klappe	(°)	45	45<60	60 < 66	1	
	Methan CH₄	(Vol%)		56,0	25,1	überbaut	
		(Vol%)		23,3	20,2	3.3312331	
4.5	Sauerstoff O ₂	(Vol. 76)		0,0	0,0	1	
7.5	Durchfluß Q	(Nm^3/h)		5,9	6,9 < 7,3	1	
	Klappe	(°)	36	36	36 < 38	1	
	Methan CH ₄	(Vol%)	54,2	38,8	13,1	überbaut	
		(Vol%)		19,4	17,0	3.0 310 341	
4.4	Sauerstoff O ₂	(Vol%)		0,0	0,5		
	Durchfluß Q	(Nm ³ /h)	2,9	2>1	1,0 > 0		
	Klappe	(°)	45	45>24	24 > 0		
	Methan CH₄	(Vol%)		21,7	18,2	17,4	
		(Vol%)		20,7	17,5	16,8	
4.2	Sauerstoff O ₂	(Vol%)		0,0	2,1	2,4	
··-	Durchfluß Q	(Nm ³ /h)		0,0	0,0	·	
	Klappe	(°)	45	0	0	90	
	Methan CH₄	(Vol%)	11,9	12,4	17,6	16,9	
		(Vol%)	14,8	14,3	14,6	14,4	
4.3	Sauerstoff O ₂	(Vol%)	0,9	1,9	2,4	2,8	
	Durchfluß Q	(Nm ³ /h)	0,0	0,0	0,0		
	Klappe	(°)	45 > 0	0	0	90	
	Methan CH ₄	(Vol%)					
	Kohlendioxid CO ₂	(Vol%)					
	Sauerstoff O ₂	(Vol%)					
	Durchfluß Q	(Nm ³ /h)					
	Klappe	(°)					
	Methan CH₄	(Vol%)					
	Kohlendioxid CO ₂	(Vol%)					
	Sauerstoff O ₂	(Vol%)					
	Durchfluß Q	(Nm ³ /h)					
	Klappe	(°)					
	Methan CH₄	(Vol%)					
	_	(Vol%)					
	Sauerstoff O ₂	(Vol%)					
	Durchfluß Q	(Nm ³ /h)					
	Klappe	(°)					
	Methan CH₄	(Vol%)	55,5	48,5/55,2	33,2 / 35,0		
	Kohlendioxid CO ₂	(Vol%)	26,7	24,9/25,6	23,7 / 24,9		
Abgang	Sauerstoff O ₂	(Vol%)	0,0	0,0/0,0	0,2 / 0,1		
	Druck	(mbar)	-3,0	-4,0	-3,0	1	
		, ,				1	
	Durchfluß Q	(Nm³/h)		25,3	28,5	-	
	Klappe 150 mm	(°)	90	90	90		

Dezentrale Gassammelstelle GS 4	<u>Messpr</u> otokoll Blatt-Nr. 10
	25.05.2021

Dotum				25.05.2021		
## Kohlendioxid CO ₂ Vol% 24,4 24,6		<u> </u>			Brunnenköpfe	
A.7 Souerstoff Co. Vol. % 0.0 0.0					49,6	
Durchfluß Q Nm²/n 7,1 45 90		Kohlendioxid CO ₂	(Vol%)	24,4	24,6	
Durchfluß Q Nm²/n 7,1 45 90	4.7	Sauerstoff O ₂	(Vol%)	0,0	0,0	
Klappe	4.1 4.6 4.5 4.4					
Month Mont	4.1 4.6 4.5 4.4			45	90	
Sauerstoff O2 Not -96 0.0 0.0		Methan CH ₄	(Vol%)	49,2	47,7	
Souestoff O ₂ Vol96 0.0 0.0 Durchfluß Q (hm²/h) 8,6 0.0 Ridppe (*) 30 90 Methan CH ₄ Vol96 57,2 überbaut Kohlendioxid CO ₂ Vol96 0.0 Durchfluß Q (hm²/h) 10,2 0.0 Ridppe (*) 66 0.0 Methan CH ₄ Vol96 34,7 überbaut Kohlendioxid CO ₂ Vol96 20,5 Sauestoff O ₂ (vol96 20,5 Sauestoff O ₂ (vol96 20,5 Sauestoff O ₂ (vol96 49,2 20,5 Sauestoff O ₂ (vol96 49,2 20,5 Sauestoff O ₂ (vol96 49,2 20,5 Kohlendioxid CO ₂ Vol96 49,2 überbaut Kohlendioxid CO ₂ Vol96 49,2 überbaut Kohlendioxid CO ₂ Vol96 49,2 überbaut Kohlendioxid CO ₂ Vol96 17,5 5 Sauestoff O ₂ Vol96 17,5 5 Sauestoff O ₂ Vol96 11,1 10,1 Kohlendioxid CO ₂ Vol96 11,1 10,1 Kohlendioxid CO ₂ Vol96 11,1 10,1 Kohlendioxid CO ₂ Vol96 11,0 1,4 Durchfluß Q (hm²/h) 3-3 Klappe (*) 30-3 0.9 Methan CH ₄ Vol96 1,5 1,9 Durchfluß Q (hm²/h) 3-3 Kohlendioxid CO ₂ Vol96 1,5 1,9 Durchfluß Q (hm²/h) 3-3 Kohlendioxid CO ₂ Vol96 1,5 1,9 Durchfluß Q (hm²/h) 3-3 Kohlendioxid CO ₂ Vol96 1,5 1,9 Durchfluß Q (hm²/h) 3-3 Kohlendioxid CO ₂ Vol96 3,5 Sauestoff O ₂ (vol96 3,5 3		Kohlendioxid CO ₂	(Vol%)	25,1	24,3	
Klappe F 30 90	4.1	Sauerstoff O ₂	(Vol%)	0,0	0,0	
Klappe F 30 90		Durchfluß Q	(Nm ³ /h)	8,6		
Methan CH,		Klappe			90	
Sauestoff O ₂ Vol% 0.0		Methan CH₄	(Vol%)	57,2	überbaut	
Durchfluß Q (\mathbb{N}m) 10.2 (\math		Kohlendioxid CO ₂	(Vol%)	28,4		
Durchfluß Q (\mathbb{N}m) 10.2 (\math	4.6	Sauerstoff O ₂	(Vol%)	0,0		
Klappe		Durchfluß Q	(Nm ³ /h)			
Methan CH ₄ (Vol%) 34.7 Überbaut Kohlendioxid CO ₂ (Vol%) 20.5						
## A.5 Kohlendioxid CO2 Vol% V			(Vol%)	34,7	überbaut	
A.5 Sauerstoff O ₂ Vol% O.0 Durchfluß Q Imm*rh 5.4 Methan CH ₄ Vol% 49.2 überbaut Kohlendioxid CO ₂ Vol% 0.0 Durchfluß Q Imm*rh 5.5 Methan CH ₄ Vol% 49.2 überbaut Methan CH ₄ Vol% 0.0 Durchfluß Q Imm*rh 5.5 Methan CH ₄ Vol% 11.1 10.1 Methan CH ₄ Vol% 11.1 10.1 Methan CH ₄ Vol% 17.2 16.2 Methan CH ₄ Vol% 1.0 1.4 Methan CH ₄ Vol% 1.0 1.4 Methan CH ₄ Vol% 1.6.5 17.3 Methan CH ₄ Vol% 1.6.5 17.9 Methan CH ₄ Vol% Sauerstoff O ₂ Vol% Sauerstoff O ₂ Vol% Sauerstoff O ₂ Vol% Methan CH ₄ Vol% Sauerstoff O ₂ Vol% Methan CH ₄ Vol% Sauerstoff O ₂ Vol.						
Durchfluß Q (Nm³/h) 5,4	4.5					
Klappe			, ,			
## A.4 Methan CH ₄ Vol% 49.2 Überbaut		Klappe				
## A.4 Sauerstoff O2 (Vol%) Durchfluß Q (Nm²/m) 5>1			(Vol%)	49,2	überbaut	
## A.4 Sauerstoff O2 (Vol%) Durchfluß Q (Nm²/m) 5>1		Kohlendioxid CO ₂	(Vol%)	17,5		
Durchfluß Q	4.4					
Klappe		Durchfluß Q	(Nm ³ /h)	5>1		
## A.2 Methan CH ₄ (vol%) 11,1 10,1 16,2 Sauerstoff O ₂ (vol%) 1,0 1,4 Durchfluß Q (nm³/n) 3>1 Klappe (°) 30>10 90 Methan CH ₄ (vol%) 16,5 17,3 Kohlendioxid CO ₂ (vol%) 16,6 16,9 Sauerstoff O ₂ (vol%) 1,5 1,9 Durchfluß Q (nm³/n) 3>1 Klappe (°) 45>10 90 Methan CH ₄ (vol%) (vol%) Kohlendioxid CO ₂ (vol%) 0,1 Sauerstoff O ₂ (vol%) 0,1 Kohlendioxid CO ₂ (vol%) 0,1 Kohlendioxid CO ₂ (vol%) 0,1 Methan CH ₄ (vol%) 0,1 Kohlendioxid CO ₂ (vol%) 0,1 Methan CH ₄ (vol%) 0,1 Durchfluß Q (nm³/n) 0,1 Methan CH ₄ (vol%) 0,1 Durchfluß Q (vol%) 0,1		Klappe				
## Abgang A.2 Sauerstoff O2 (Vol%) 1,0 1,4			(Vol%)	11,1	10,1	
Durchfluß Q (Nm³/h) 3>1		Kohlendioxid CO ₂	(Vol%)	17,2	16,2	
Durchfluß Q (Nm³/h) 3>1	4.2				1,4	
Klappe (°) 30>10 90						
Kohlendioxid CO2		Klappe			90	
Sauerstoff O2			(Vol%)	16,5	17,3	
Durchfluß Q (Nm³/h) 3>1			, ,		16,9	
Klappe (°) 45>10 90 Methan CH4 (Vol%) (Kohlendioxid CO2 (Vol%) (V	4.3	Sauerstoff O ₂			1,9	
Methan CH4 (Vol%)		Durchfluß Q	(Nm ³ /h)			
Kohlendioxid CO2 (Vol%) Sauerstoff O2 (Vol%) Suerstoff O			, ,		90	
Sauerstoff O2 (Vol%)			,			
Durchfluß Q (Nm³/h) Klappe (°)		Kohlendioxid CO ₂	, ,			
Methan CH4		Sauerstoff O ₂	(Vol%)			
Methan CH ₄ (Vol%)		Durchfluß Q	(Nm ³ /h)			
Kohlendioxid CO2 (Vol%) Sauerstoff O2 (Vol%) Suerstoff O2 (Vol%) Suerstoff O2 (Nm³/h) Klappe (°)			(°)			
Sauerstoff O2 (Vol%)						
Durchfluß Q (Nm³/h) Klappe (°)		Kohlendioxid CO ₂	(Vol%)			
Klappe (°)		Sauerstoff O ₂				
Methan CH ₄ (Vol%)		Durchfluß Q	(Nm ³ /h)			
Kohlendioxid CO2 (Vol%)			(°)			
Sauerstoff O2 (Vol%)		Methan CH₄	(Vol%)			
Durchfluß Q (Nm³/h) Klappe (°)		Kohlendioxid CO ₂	(Vol%)			
Klappe (°)		Sauerstoff O ₂	(Vol%)			
Klappe (°)		Durchfluß Q	(Nm ³ /h)			
Abgang Kohlendioxid CO2 (Vol%) 25,4 Sauerstoff O2 (Vol%) 0,1 Druck (mbar) -3,0 Durchfluß Q (Nm³/h) 34,3		Klappe	(°)			
Abgang Kohlendioxid CO2 (Vol%) 25,4 Sauerstoff O2 (Vol%) 0,1 Druck (mbar) -3,0 Durchfluß Q (Nm³/h) 34,3		Methan CH ₄	(Vol%)	50,2		
Abgang Sauerstoff O2 (Vol%) 0,1 Druck (mbar) -3,0 Durchfluß Q (Nm³/h) 34,3			(Vol%)	25,4		
Druck (mbar) -3,0 Durchfluß Q (Nm³/h) 34,3	Abaana					
Durchfluß Q (Nm³/h) 34,3			<u> </u>		 	
			, ,			
Klappe (°) 90		Durchfluß Q				
<u> </u>		Klappe	(°)	90	<u> </u>	


Anlage 9: Tiefengestaffelte Untersuchung Deponie Venneberg

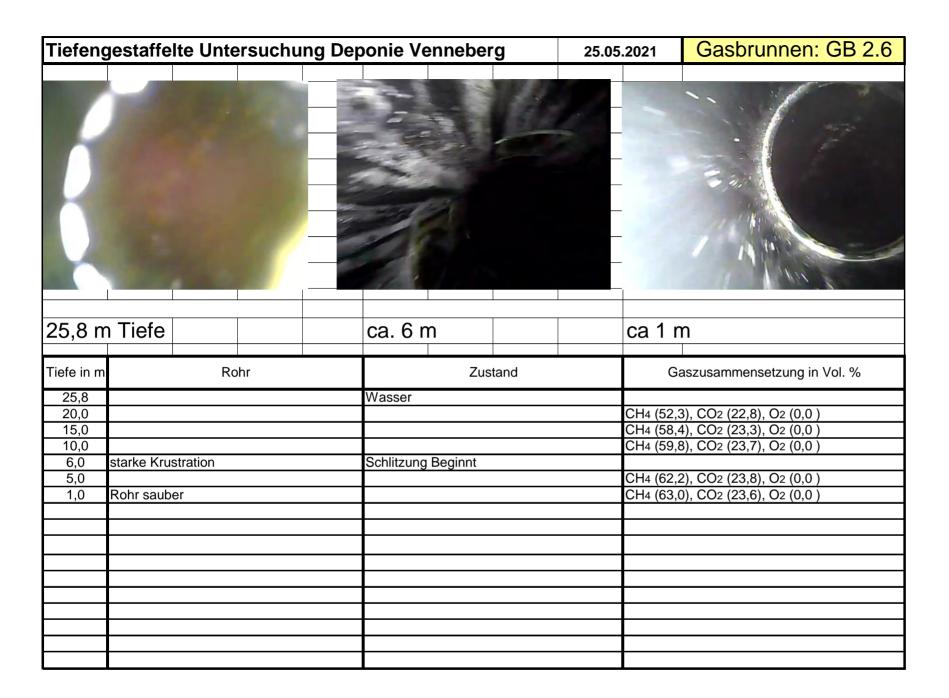

Tiefenç	gestaffelt	e Unte	rsuchung De	ponie V	enneberg	25.05	5.2021	Gasbrunnen: GB 1.1		
7,9 m	Tiefe			6 m			1 m			
Tiefe in m		Rol	nr		Zustand			Gaszusammensetzung in Vol. %		
7,9 7,0 6,0 3,0	wenig Krustr	ation		Boden Schlitzung	g Beginnt), CO ₂ (17,1), O ₂ (1,8)		
1,0	Rohr sauber			Schwebet	eilchen		CH4 (4,3 CH4 (4,2), CO ₂ (17,0), O ₂ (2,2)), CO ₂ (17,0), O ₂ (2,3)		
		_								

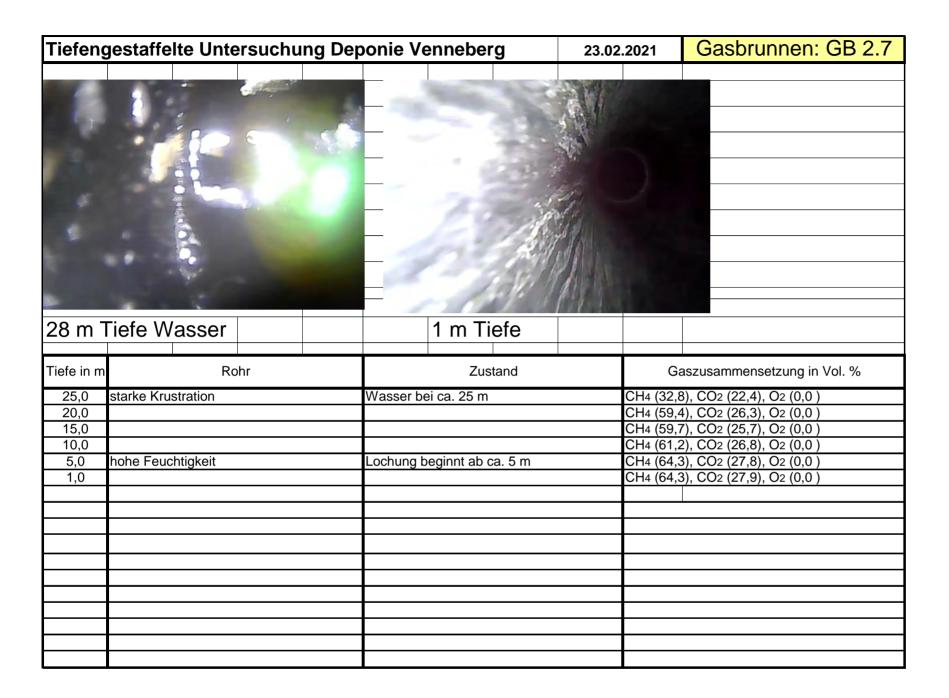
Tiefenç	gestaffelte U	ntersuchung Dep	oonie Venneberg	25.05	5.2021	Gasbrunnen: GB 1.2
12,6 m	n Tiefe		ca. 4 m		1,5 m	
Tiefe in m		Rohr	Zustar	nd	Ga	szusammensetzung in Vol. %
12,6 10,0			Wasser		CH4 (7.3).	. CO2 (14.0), O2 (0.2)
5,0					CH4 (7,3),	, CO ₂ (14,0), O ₂ (0,2) , CO ₂ (14,0), O ₂ (0,5)
4,0 1,0	Krustration leichte Krustratior	n	Schlitzung Beginnt		CH4 (7,1),	, CO ₂ (14,0), O ₂ (1,0)
					-	

Tiefenç	gestaffelte	Unter	suchung Dep	onie Ve	enneber	g	25.05.2021	Gasbrunnen: GB 1.3
		作をは						
14,2 m	Tiefe			ca. 5 r	n		1 m	
Tiefe in m		Roh	r		Zus	tand	Ga	aszusammensetzung in Vol. %
14,2 14,0				Boden			CH4 (35,9	9), CO ₂ (24,8), O ₂ (0,0)
10,0				0.1111	5		CH4 (36,7	7), CO ₂ (24,7), O ₂ (0,0)
5,0 1,0	starke Krustrati Krustration	ion		Schlitzung	Beginnt			9), CO ₂ (24,6), O ₂ (0,0) 7), CO ₂ (24,8), O ₂ (0,0)
.,0							0111 (00,1), === (= ·,=), == (=,=)
1								

Tiefenç	gestaffelte Unt	ersuchung Deponie Venneberg	25.05.2021	Gasbrunnen: GB 1.7
24,3 m	n Tiefe	ca. 4,5 m	ca 1,	8 m
Tiefe in m	R	ohr Zustand	G	Gaszusammensetzung in Vol. %
24,3 20,0 15,0 10,0 4,5 1,0	Krustration	Schlitzung Beginnt	CH4 (37 CH4 (42	,5), CO ₂ (18,6), O ₂ (0,0) ,1), CO ₂ (20,0), O ₂ (0,0) ,8), CO ₂ (22,5), O ₂ (0,0)

Tiefenç	gestaffelte Unte	ersuchung Dep	onie Vennebe	rg	25.05.2021	Gasbrunnen: GB 1.8
26,4 m	n Tiefe		ca. 8 m		ca 1 r	n
Tiefe in m	Ro	ohr	Zus	stand	G	aszusammensetzung in Vol. %
25,2 22,0 17,0 12,0 7,0 6,5 1,0	starke Krustration starke Krustration starke Krustration		Schlitzung Beginnt		CH4 (23, CH4 (23, CH4 (23,	1), CO ₂ (20,4), O ₂ (0,0) 0), CO ₂ (20,1), O ₂ (0,0) 7), CO ₂ (20,1), O ₂ (0,0) 4), CO ₂ (20,1), O ₂ (0,0)


ıng Deponie Venneberg	25.05.2021	Gasbrunnen: GB 2.1
ca. 5 m	ca 1,	7 m
Zustand	G	aszusammensetzung in Vol. %
Schlitzung Beginnt hohe Feuchtigkeit	CH4 (29 CH4 (30	3), CO ₂ (18,9), O ₂ (0,0) 6), CO ₂ (18,9), O ₂ (0,0) 0), CO ₂ (19,1), O ₂ (0,0) 4), CO ₂ (19,1), O ₂ (0,0)
	Zustand Wasser Schlitzung Beginnt	Ca. 5 m Zustand Wasser CH4 (29) CH4 (29) Schlitzung Beginnt CH4 (30)


Tiefenç	gestaffelte l	Intersuchung Der	oonie Vennebe	rg 25.09	5.2021	Gasbrunnen: GB 2.2
17,1 m	Tiefe		ca. 5 m		ca 1,5	m
Tiefe in m		Rohr	Zus	stand	Ga	szusammensetzung in Vol. %
17,1 15,0 10,0 5,0 1,0	leichte Krustration Rohr sauber	on	Schlitzung Beginnt		CH4 (35,6 CH4 (35,8	o), CO ₂ (19,1), O ₂ (0,0) o), CO ₂ (20,1), O ₂ (0,0) o), CO ₂ (20,1), O ₂ (0,0) o), CO ₂ (20,3), O ₂ (0,0)

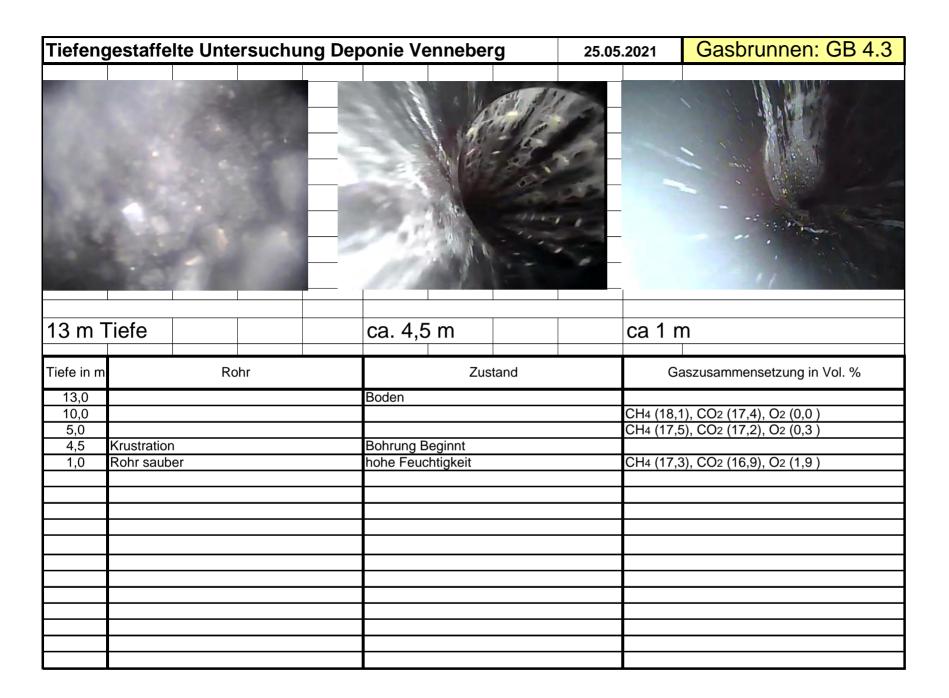
Tiefeng	gestaffelte Unte	ersuchung Dep	oonie Vennebe	erg	25.05.2021	Gasbrunnen: GB 2.3
40.4 70	Tinfa					
18,1 m	1 lefe		ca. 5 m		ca 1,9	9 m
Tiefe in m	Ro	ohr	Zu	stand	G	aszusammensetzung in Vol. %
18,1 15,0 10,0 5,0 1,0 Rohr sauber		Schlitzung Beginnt		CH4 (39, CH4 (39,	5), CO ₂ (19,9), O ₂ (0,0) 1), CO ₂ (20,6), O ₂ (0,0) 9), CO ₂ (20,5), O ₂ (0,0) 8), CO ₂ (20,7), O ₂ (0,0)	

Tiefeng	gestaffelte Unt	ersuchung Dep	onie Vennebei	rg 25.05	.2021 (Gasbrunnen: GB 2.4
13,7 m	Tiefe		ca. 6 m		ca 1 m	
Tiefe in m	R	ohr	Zus	stand	Gaszı	usammensetzung in Vol. %
13,7 10,0 6,0 starke Krustration 5,0 1,0 Rohr sauber		Schlitzung Beginnt hohe Feuchtigkeit		CH4 (40,9), (CO2 (27,3), O2 (0,0) CO2 (27,6), O2 (0,0) CO2 (27,6), O2 (0,0)	

Tiefen	gestaffelte Un	tersuchur	ng Deponie Venneberg	25.05.2021	Gasbrunnen: GB 2.5
14,7 n	n Tiefe		ca. 6 m	ca 1 i	m
Tiefe in m	1	Rohr	Zustand	G	aszusammensetzung in Vol. %
14,7 14,0 10,0 6,0 5,0 1,0	starke Krustration Rohr sauber		Schlitzung Beginnt	CH4 (35,	6), CO ₂ (24,0), O ₂ (0,0) 8), CO ₂ (24,6), O ₂ (0,0) 5), CO ₂ (25,0), O ₂ (0,0) 6), CO ₂ (25,0), O ₂ (0,0)

Tiefenç	gestaffelte Unte	ersuchung Der	g 25.05	.2021	Gasbrunnen: GB 2.8	
26,3 m	n Tiefe		ca. 6 m		ca 1 m	
Tiefe in m	Ro	ohr	Zusta	and	Gasz	rusammensetzung in Vol. %
26,3			Wasser			
25,0					CH4 (39,4),	CO ₂ (21,9), O ₂ (0,0)
20,0 15,0				!		('()0 (')')
			†			CO ₂ (22,5), O ₂ (0,0)
10.0					CH4 (45,4),	CO ₂ (22,8), O ₂ (0,0)
10,0 6.0	starke Krustration		Schlitzung Beginnt		CH4 (45,4),	
10,0 6,0 5,0	starke Krustration		Schlitzung Beginnt		CH4 (45,4), CH4 (46,8),	CO ₂ (22,8), O ₂ (0,0) CO ₂ (23,2), O ₂ (0,0)
6,0	starke Krustration		Schlitzung Beginnt		CH4 (45,4), CH4 (46,8), CH4 (48,4),	CO ₂ (22,8), O ₂ (0,0)
6,0 5,0	starke Krustration		Schlitzung Beginnt		CH4 (45,4), CH4 (46,8), CH4 (48,4),	CO2 (22,8), O2 (0,0) CO2 (23,2), O2 (0,0) CO2 (23,9), O2 (0,0)
6,0 5,0	starke Krustration		Schlitzung Beginnt		CH4 (45,4), CH4 (46,8), CH4 (48,4),	CO2 (22,8), O2 (0,0) CO2 (23,2), O2 (0,0) CO2 (23,9), O2 (0,0)
6,0 5,0	starke Krustration		Schlitzung Beginnt		CH4 (45,4), CH4 (46,8), CH4 (48,4),	CO2 (22,8), O2 (0,0) CO2 (23,2), O2 (0,0) CO2 (23,9), O2 (0,0)
6,0 5,0	starke Krustration		Schlitzung Beginnt		CH4 (45,4), CH4 (46,8), CH4 (48,4),	CO2 (22,8), O2 (0,0) CO2 (23,2), O2 (0,0) CO2 (23,9), O2 (0,0)
6,0 5,0	starke Krustration		Schlitzung Beginnt		CH4 (45,4), CH4 (46,8), CH4 (48,4),	CO2 (22,8), O2 (0,0) CO2 (23,2), O2 (0,0) CO2 (23,9), O2 (0,0)
6,0 5,0	starke Krustration		Schlitzung Beginnt		CH4 (45,4), CH4 (46,8), CH4 (48,4),	CO2 (22,8), O2 (0,0) CO2 (23,2), O2 (0,0) CO2 (23,9), O2 (0,0)
6,0 5,0	starke Krustration		Schlitzung Beginnt		CH4 (45,4), CH4 (46,8), CH4 (48,4),	CO2 (22,8), O2 (0,0) CO2 (23,2), O2 (0,0) CO2 (23,9), O2 (0,0)

Tiefengestaffelte Untersuchung Deponie Venneberg						rg	23.02.2021	Gasbrunnen: GB 3.1
13 m 7	Γiefe ·			6 m			2,5 m	
Tiefe in m		Ro	ohr		Zus	tand	Ga	aszusammensetzung in Vol. %
13,0 10,0 6,0 1,0	0 Krustration			Boden Lochung beginnt ab ca. 6 m			CH4 (25,4 CH4 (31,4	4), CO ₂ (25,0), O ₂ (0,0) 4), CO ₂ (24,6), O ₂ (0,0) 4), CO ₂ (25,2), O ₂ (0,0) 4), CO ₂ (25,2), O ₂ (0,0)


Tiefen	gestaffelte Unte	ersuchung Dep	erg	25.05.2021	Gasbrunnen: GB 3.2	
140 n	a Tiofo		00. 9 m		00.1	
14,9 n	n Tiefe		ca. 8 m		ca 1 r	<u>M</u>
Tiefe in m	Ro	ohr	Z	ustand	G	aszusammensetzung in Vol. %
14,9 14,0 10,0 6,5 5,0 1,0	14,9 14,0 10,0 6,5 sehr starke Krustration 5,0		Boden Lochung Beginnt		CH4 (37,	9), CO ₂ (19,9), O ₂ (0,0) 8), CO ₂ (19,8), O ₂ (0,0) 0), CO ₂ (20,7), O ₂ (0,0) 1), CO ₂ (20,7), O ₂ (0,0)

Tiefeng	gestaffel	te Unte	rsuchung De	ponie Ve	nneber	g	25.05.2021	Gasbrunnen: GB 3.3		
15,8 m	n Tiefe			ca. 5 m	n		ca 1,6	6 m		
Tiefe in m		Rol	nr		Zustand			Gaszusammensetzung in Vol. %		
15,8	sehr starke	Krustration	1	Boden	Boden					
15,0	sehr starke						CH4 (39,	7), CO ₂ (20,1), O ₂ (0,0)		
10,0	sehr starke						CH4 (42,	4), CO ₂ (20,4), O ₂ (0,0)		
5,0	sehr starke		1	Bohrung Beginnt				CH4 (44,8), CO ₂ (20,6), O ₂ (0,0)		
1,0	leichte Krus	tration		hohe Feuch	ntigkeit		CH4 (44,	8), CO ₂ (20,4), O ₂ (0,0)		
			·							
				1						

Tiefenç	Tiefengestaffelte Untersuchung Deponie Venneberg								Gasbrunnen: GB 3.7		
		6									
12,5 m	Tiefe			ca. 6,	5 m			ca 1,6	6 m		
Tiefe in m		Ro	hr		Zustand				Gaszusammensetzung in Vol. %		
12,5 10,0 6,5 5,0 1,0	12,5 10,0 6,5 Krustration 5,0			Boden Bohrung	Boden Bohrung Beginnt				1), CO ₂ (25,0), O ₂ (0,0) 2), CO ₂ (24,5), O ₂ (0,0) 4), CO ₂ (24,3), O ₂ (0,0)		

Tiefenç	gestaffelte Unte	ersuchung Dep	eberg	25.05.202	Gasbrunnen: GB 4.1	
11,4 m	n Tiefe		ca. 6,5 m		Ca	a 1 m
Tiefe in m	Ro	ohr		Zustand		Gaszusammensetzung in Vol. %
11,4 10,0 6,5 5,0 1,0	6,5 sehr starke Krustration 5,0		Wasser Bohrung Beginnt hohe Feuchtigkeit			H4 (45,8), CO ₂ (23,9), O ₂ (0,0) H4 (47,9), CO ₂ (24,4), O ₂ (0,0) H4 (47,7), CO ₂ (24,3), O ₂ (0,0)

Tiefeng	gestaffelte Unte	ersuchung Dep	rg	25.05.2021	Gasbrunnen: GB 4.2		
12,8 m	Tiefe		ca. 6,5 m		ca 1,5	5 m	
Tiefe in m	Ro	ohr	Zu	stand	G	Gaszusammensetzung in Vol. %	
12,8 10,0 6,5 5,0 1,0	6,5 5,0		Boden Bohrung Beginnt		CH4 (10,	8), CO ₂ (18,0), O ₂ (0,0) 7), CO ₂ (18,0), O ₂ (0,0) 1), CO ₂ (16,2), O ₂ (1,4)	

Tiefenç	gestaffelte Unte	ersuchung Dep	eberg	25.05.2021	Gasbrunnen: GB 4.7		
14,4 m	n Tiefe		ca. 7 m		ca 1 ı	n	
Tiefe in m	Ro	ohr		Zustand	G	aszusammensetzung in Vol. %	
14,4			Boden				
14,0					CH4 (44,	3), CO ₂ (23,5), O ₂ (0,0) 8), CO ₂ (23,9), O ₂ (0,0)	
10,0					CH4 (46,	8), CO ₂ (23,9), O ₂ (0,0)	
6 m	Rohr sauber		Bohrung Begini	<u>nt</u>			
5,0	Dalaman		baba Establish	- 11	CH4 (49,	CH4 (49,4), CO ₂ (24,7), O ₂ (0,0) CH4 (49,6), CO ₂ (24,6), O ₂ (0,0)	
1,0	Rohr sauber		hohe Feuchtigk	eit	CH4 (49,	6), CO2 (24,6), O2 (0,0)	